
Handspring
Development Tools
Guide

Release 1.2

Handspring Development Tool Guide

- 2 -

Information herein is preliminary and subject to change without notice.
Copyright © 1999, 2000, 2001, 2002 by Handspring, Inc., with the following exceptions:
Wes Cherry and Aaron Ardiri are copyright holders for pilRC, on which Palm-RC is based.

All rights reserved.
TRADEMARK ACKNOWLEDGMENT
Handspring, Visor, and Springboard are trademarks of Handspring, Inc.
All other trademarks are the properties of their respective owners.

Document number: 80-0092-00
Handspring, Inc.
189 Bernardo Ave.
Mountain View, CA 94043-5203
TEL: (650) 230-5000
FAX: (650) 230-2100
www.handspring.com

http://www.handspring.com/

Handspring Development Tool Guide

- 3 -

Table of Contents

1 Introduction... 7

1.1 Intended Scope of this Document ..7
1.2 Types of Software Development for Handspring Handhelds...7
1.3 Software Development for Handspring Handhelds ..9
1.4 Generic Applications..9

1.4.1 Handspring Palm OS GNU Tools ...9
1.4.2 Metrowerks CodeWarrior ..9
1.4.3 Other Development Environments ...10

1.5 Generic Applications on a Springboard Module... 10
1.6 Special Purpose Applications.. 10

2 Handspring Coding Standards .. 11

2.1 About the Handspring Coding Standards ... 11
2.2 General Program Design.. 11
2.3 Organization of Source Files .. 11
2.4 Formatting Conventions... 12
2.5 Commenting and Style ... 13
2.6 Naming Conventions.. 16

2.6.1 Capitalization ..16
2.6.2 Choosing Names...16
2.6.3 Resource ID names ...17
2.6.4 Filenames...18

2.7 Basic Types .. 19

3 Handspring Palm OS GNU Tools – Getting Started .. 20

3.1 First Step: Download The Tools ... 21
3.1.1 If You Are New to GNU C Development ...21
3.1.2 Development Environment and Tools ...21
3.1.3 Sample Projects ..21
3.1.4 Utilities..21
3.1.5 General Documentation ...21

3.2 Second Step: Install and Configure.. 23
3.2.1 Installation...23
3.2.2 Configuration ..23

3.3 Third Step: Software Development... 24
3.4 Fourth Step: Program and ROM Build ... 25

3.4.1 Build Process ..25

Handspring Development Tool Guide

- 4 -

3.4.2 Generate a ROM Image ..25
3.4.3 Creating Flash ROM Updates for Customers ...25

3.5 Fifth Step: Debugging .. 26
3.5.1 Debugging on a Handheld..26
3.5.2 Debugging on the Emulator (POSE)..26

4 Handspring Palm OS GNU Tools.. 27

4.1 About the Handspring Palm OS GNU Tools .. 27
4.2 Installation ... 28

4.2.1 Manual Installation Of Tools ...28
4.2.2 Using the Function Pop-up Developer Studio add-in ..30

4.3 Overview of Available Tools .. 32
4.3.1 Palm-Specific tools..32
4.3.2 General Purpose GNU tools ...32
4.3.3 GNU tools for Palm OS development ...32

4.4 Pitfalls to Avoid! .. 33
4.4.1 make ..33
4.4.2 m68k-palmos-gcc ...33

4.5 Using the Tools... 33

5 GNU References ... 35

6 Palm-MakeROM Overview... 36

6.1 Description .. 36
6.2 Usage Summary... 36

6.2.1 Examples..38

6.3 Palm-RC .. 42
6.3.1 Description...42

6.4 HsSplit ... 42
6.4.1 Description ...42
6.4.2 Usage Summary...42

6.4.3 Examples ..42

6.5 Palm-PrcDump ... 42
6.5.1 Description...42
6.5.2 Usage Summary...42

6.5.3 Examples ..43

6.6 ToDos, ToMac, ToWin, ToUnix ... 45
6.6.1 Description ...45

Handspring Development Tool Guide

- 5 -

6.6.2 Usage Summary...45

6.6.3 Examples ..45

7 PalmRC User Manual.. 46

7.1 Description .. 46
7.2 Table of Contents ... 46
7.3 Usage.. 46
7.4 RCP file format ... 50

7.4.1 Include Files...51

7.5 Resource Language Reference ... 51
7.6 International Support.. 60
7.7 Known Bugs... 61

8 Palm Debugger User’s Guide ... 62

8.1 About PalmDebugger ... 62
8.2 User Interface Overview... 63

8.2.1 The Windows ..63

8.2.2 The Menus...63

8.3 The Console Window .. 64
8.3.1 Commonly used Console Commands..64
8.3.2 Less Commonly-used Console Commands..67

8.4 The Debugger Window ... 69
8.4.1 Attaching to the Device ..69
8.4.2 Commonly-Used Debugger Commands ...70
8.4.3 Debugger Expressions ...77

8.5 The Source Window... 83
8.5.1 How Symbol Files Are Used ...84
8.5.2 The Load Symbols Menu Commands..84
8.5.3 The Source Menu...85

8.6 Debugging Hints... 86
8.6.1 Entering the Debugger...86
8.6.2 Finding Code ...86
8.6.3 Finding Memory-Trashing Bugs..89
8.6.4 Viewing Local Variables and Function Parameters...90
8.6.5 Using the Console Window When the Debugger is Attached...91
8.6.6 Changing PalmDebugger's baud rate...92
8.6.7 Debugging Applications That Use the Serial Port...92
8.6.8 Importing System Extensions and Libraries ..92

Handspring Development Tool Guide

- 6 -

Handspring Development Tool Guide

- 7 -

1 Introduction

1.1 Intended Scope of this Document
This guide is intended primarily for developers who want to create applications for Handspring products
including specialized Springboard™ modules. Currently, Software Development Kits (SDKs) designed to assist
developers are developed using the HandspringTM Palm OS® GNU Tools. These tools are discussed in this
document. In addition, utilities such as Palm-MakeROM, which are part of the Handspring GNU Tools, are
documented here for developers who want to port Palm OS based software to a Springboard module.

For Palm OS software development, the following section provides a list of useful resources; however, the
remainder for this guide will focus on software tools required to develop a Springboard module.

Software for the Handspring systems can be developed in the same way as any Palm OS-based application;
however, when you want to create a Springboard module for your applications, you must then use Handspring’s
development tools.

1.2 Types of Software Development for Handspring Handhelds
The key factor that makes the SpringboardTM Expansion Slot a compelling platform is its plug-and-play
functionality. The Springboard Expansion Slot allows different modules to be inserted and removed from a
handheld computer at any time. To support this functionality, Handspring has created extensions to the standard
Palm OS® in order to enable new, specialized hardware and software to:

• Detect the insertion of a module.

• Load applications and appropriate drivers stored on the module.

• Cleanly remove software when the module is removed.

This functionality correctly implements plug-and-play for the handheld computer.

Application software that resides in a module’s memory is executed in place, just like applications in the device’s
internal ROM or RAM. With this design, Palm OS jumps directly to program code, rather than “loading” an

Handspring Development Tool Guide

- 8 -

application into internal memory and “jumping” to the appropriate code on the module memory. This
functionality is sometimes referred to as “execute in place.” This architecture is well suited to handheld devices in
which memory and processing power are scarce resources.

The Springboard Expansion Slot builds on this architecture by directly mapping memory and I/O ports on the
module to the main processor’s address space. Access to hardware in the handheld and on the module is
conducted in exactly the same way. Software is executed in place on the module. To support full plug-and-play
functionality, the system allows for removal of a module while it is running an application. The user is
automatically switched out of the module application and back to the Application Launcher, as necessary.

This guide describes the Springboard Expansion Slot, and provides you with the information necessary to:

• Implement “application-only” products on a Springboard-compatible memory module.

• Design Springboard-compatible modules with specialized hardware and the applications to support them.

Handspring Development Tool Guide

- 9 -

1.3 Software Development for Handspring Handhelds
There are three general categories of software development for Handspring handhelds. Each category has
different requirements. Each of these categories is described in greater detail in the sections that follow. The
three categories are:

Generic Applications: These applications execute from the Handspring handheld’s internal memory.

Examples: Any of the utilities, games, and other applications that can be downloaded for use on Palm OS-
based devices.

Generic Applications on a Springboard Module: These applications execute from a Springboard memory
module. Inserting a module provides instant access to the application, eliminating the need to download and
install software.

Example: A Palm OS reference guide that is distributed on a Springboard module to accommodate retail
distribution. In particular, a Springboard memory module is a better platform for larger applications that
would be cumbersome to install and consume internal memory.

Special Purpose Applications: These applications access specialized hardware on the Springboard module.
Additionally, a “special purpose” application may also install interrupt handlers and other system modifications in
support of the module hardware. All the software necessary to operate the module is resident on the module itself,
eliminating the need to download and install software and drivers.

Example: Software and drivers to operate a Springboard module such as VisorPhone (Handspring’s GSM
phone module).

1.4 Generic Applications
There are various development environments for Palm OS-based systems. The two primary tools are the Palm
OS GNU Tools and Metrowerks' CodeWarrior. Following is an overview of these tools. For more detailed
information, or to download these tools, go to the Handspring website at:

http://www.handspring.com/developers/sw_dev.jhtml

1.4.1 Handspring Palm OS GNU Tools
The GNU Tools are based on the Unix environment and are command line driven. If you're accustomed to Unix
development, this will be very familiar. To develop for Handspring handhelds you must use Handspring's GNU
Tools that use the Cygwin GNU utilities for Windows. Handspring has also developed a Microsoft Visual C++
project file that calls the GNU Tools. With this approach, you can have the ease of using an IDE with the
flexibility of open source development tools. A complete description of the tools is included with the download.
These tools are currently available for download from Handspring for use in the Windows environment. The
Handspring Extension header files (available from Handspring’s website) must be installed onto this development
tool for applications using the Handspring Extension APIs.

1.4.2 Metrowerks CodeWarrior
Metrowerks CodeWarrior is an integrated development environment with a graphical interface that allows for
easier generation of forms. It also provides a utility for automatically managing files and resources. The "lite"
version -- which doesn't allow for software distribution -- is free to download. The full version can be purchased
from Metrowerks. These tools are currently available from Palm for use in both the Windows and Macintosh
environments. The Handspring Extension header files (available from Handspring’s website) must be installed
onto this development tool for applications using the Handspring Extension APIs.

http://www.handspring.com/developers/sw_dev.jhtml

Handspring Development Tool Guide

- 10 -

1.4.3 Other Development Environments
The Palm developers’ web site (http://www.palmos.com/dev/tech/tools/) contains information on other
development environments available for the Palm OS.

Developing software for Handspring handhelds is the same as developing for other Palm OS-based systems. For
example, Visor™ is based on Palm OS 3.1, so documentation covering standard Palm OS development is
applicable. The Palm developers’ web site (http://www.palmos.com/dev/support/docs/) contains a variety of
references covering standard Palm OS development.

1.5 Generic Applications on a Springboard Module
If you are an application developer who simply wants to transfer your application to a non-volatile Springboard
memory module, you simply need the Palm-MakeROM tool as described in this guide to build a ROM image.
Third party suppliers can use your ROM image to program memory modules in quantity.

For development purposes, you can also use Handspring’s 8MB Flash Module. This module, available on our web
site, is a run-time read-only memory-based module that can be re-programmed using the Palm Debugger.
Handspring includes the FileMover application with this module that enables users to transfer any applications
between internal and module memory. Developers can use the FileMover application to move software onto the
module for testing purposes.

Handspring has also developed CardUpdaterMakerSDK that provides an easy way for developers to generate a
utility that customers can use to update a Flash module. Note that this process will erase the entire flash card and
it will not be usable as an 8MB Flash Module. To restore the original functionality of this module you will need to
download the appropriate file from our Customer Care website.

http://www.handspring.com/support/index.jhtml

Since the Springboard memory modules can be removed at any time during execution, there are some
considerations to take into account when designing your application. Specifically, software that uses shared
libraries or installs system modifications (e.g., interrupt handlers) should be configured properly to work with the
plug-and-play features of the Springboard Expansion Slot. Refer to the section entitled Application Development To
Support Plug-and-Play in the Springboard Development Guide for a more detailed description.

You might want to consider designating a Welcome application on your module. This application would be
launched automatically when your Springboard module is inserted in a handheld. Refer to the section entitled
Module Welcome application in the Springboard Development Guide for a more detailed description.

Finally, applications that execute from a Springboard memory module (i.e., masked ROM, Flash, and OTP) are
based on read-only memory and should be designed appropriately.

1.6 Special Purpose Applications
If you are building a Springboard module with specialized hardware, you must use the Handspring Extension
API. This API and all other necessary information to build Springboard-compatible modules are explained in the
next sections.

The Developer section of Handspring’s website contains source code examples for Springboard module
applications. They have been developed using the Handspring Palm OS GNU Tools. These examples show how
to develop more sophisticated applications that install interrupt handlers or OS patches when the associated
module is plugged into the Springboard Expansion Slot. These examples have been fully tested at Handspring and
can be used as a baseline for application development.

http://www.palmos.com/dev/tech/tools/
http://www.palmos.com/dev/support/docs/
http://www.handspring.com/support/index.jhtml

Handspring Development Tool Guide

- 11 -

2 Handspring Coding Standards

2.1 About the Handspring Coding Standards
The Handspring coding standards are essentially the Palm OS naming conventions, combined with GNU
formatting conventions. Developers will find all Handspring code in this format. These conventions are
recommendations for easier readability and are not requirements.

2.2 General Program Design
In general, the following guidelines should be followed to make your code as bug-free, maintainable, and portable
as possible:

• Minimize the use of global variables. This falls under the general guideline of using good data abstraction.
In general, try to minimize the exposure of any variables to the smallest subset of functions that need to
directly access the variable. When performance is acceptable, require the use of accessor functions to read
and/or modify variables.

• Minimize the number of exported functions and equates. Try to make as many functions and equates
private (static) to a particular source code module as possible.

• Choose long, descriptive function, variable, and equate names. This helps document the code and can
save you from having to write as many comments.

• Make the code look "pretty". Judicious use of white space and comment blocks can go a long way to
making your code more readable and maintainable -- especially by others.

• Separate platform-independent code into separate source files from platform-dependent code. Always
try to structure your sources so that only a subset of the source files need to be rewritten when porting to a
different platform. For example, all the code that makes Win32 API calls for a GUI Windows application
should be broken out into separate source files from the core platform-independent code.

• Avoid the use of arbitrary limits on the length of any array including filenames, symbols, and user
input. Allocate these types of structures dynamically.

• Always check result codes on function calls. When compiled for debug mode, display the filename, line
number, and associated error text for any error encountered.

2.3 Organization of Source Files
Each project should be in it's own directory with the following structure and directory names:

/MyProject
/Build # makefiles, IDE project files, build scripts
/Docs # Documentation, including:

ChangeLog.txt # text file with change notes
Requests.txt # text file with feature and bug fix requests
*.html # HTML documents
*.doc # Word documents

/Incs # Include files that are shared among the different
source files in the project. Private includes should
be put into the /Src directory.

/Obj # all object code, temp files, and the final executable
go here. Basically, any files that can be deleted
and re-built should go here.

/Src # platform-independent source code
/SrcWin # Windows-specific source code
/SrcMac # Macintosh-specific source code

http://www.gnu.ai.mit.edu/prep/standards.html

Handspring Development Tool Guide

- 12 -

2.4 Formatting Conventions
All source files should be edited using a tab stop of 4, and lines should be no wider than a typical portrait-size
window (approximately 80 columns).

All function implementations should be formatted as shown below with the return type, function name, and open
and close braces all at column 0. If the parameters must be continued on the next line, align them with the first
parameter of the line above. The body of the function starts at column 2.

void*
GdbExecuteCmd (void* gP, char** resultsPP, unsigned int echoReq,

unsigned int echoRsp, long timeout)
{

// function body goes here
return MyFunction (gP);

}

When declaring pointer types, place the asterisk immediately after the base type, not next to the pointer name.
Using this convention, multiple pointer variables must be declared on separate lines, such as:

char* srcP;
char* dstP;

When making function calls, put spaces before the open parenthesis, and after the commas:

MyFunction (param1, param2, param3);

Inside the body of the function, if-else statements should appear with braces indented two columns and the body
of the "if" indented two more columns. If there are no braces, then the single line body is simply indented two
columns:

if (gP == 0)
foo = bar;

else
{

foo = bar + 2;
return foo;

}

if (myVar == 0)
foo = bar;

else if (myVar == 1)
{

foo = bar + 1;
return foo;

}

Try to avoid assignments within conditional tests. Instead, include an extra assignment line as follows:

foo = MyFunction();
if (foo == 0)

Exit();

Handspring Development Tool Guide

- 13 -

While and do-while loops should be formatted as follows:

while (foo)
{

bar = MyFunction (bar);
foo--;

}

do
{

bar = MyFunction (bar);
foo--;

}
while (foo > 3);

When conditional tests or evaluations must repeat on the next line, split them before an operator -- not after -- as
shown below. Also, try to avoid having two operators of different precedence at the same level of indentation:

if ((thisIsLong && thisIsLong2 && thisIsLong3 && thisIsLong4
&& thisIsLong5 || (anotherLong && anotherLong2))

|| anotherLong3)
{

thisVariable = variable1 + variable2 + variable3
+ variable 4;

}

Switch statements should be formatting as follows:

switch (foo)

{
case 1:

DoSomething ();
break;

case 2:
DoSomethingElse ();
break;

}

2.5 Commenting and Style
The top of every source and header file should contain a comment section formatted such as:

/***
*
* Project:
* PalmDebugger
*
* Copyright info:
* <developer Copyright notice goes here>
*
* FileName:
* GdbWin.cpp
*
* Description:
* This file contains the code that launches and communicates with the
* background process running gdb under Windows.
*
* ToDo:
*
* History:
* 21-Nov-1998 - Created by AB
*
***/

Handspring Development Tool Guide

- 14 -

The implementation of each function should be preceded by a comment section formatted as shown below. It
should contain the function name, a summary of what the function does, the list of parameters, with each
identified as either an input (IN), output (OUT), or input and output (INOUT), a description of the possible
return values, a list of the most likely callers of this function, miscellaneous notes, and a history section.

/***
* Function: GdbExecuteCmd
*
* Summary:
* Sends a command string to the GDB process and waits and
* optionally captures all output from the command. This
* routine will automatically append a newline to the end of
* the command string if not present already. It will also
* strip off the command prompt 'prvPromptStr' if present
* at the beginning of the command string.
*
* Parameters:
* gP IN Pointer to private GDB Globals
* *resultsPP OUT If resultsPP is not null, then on exit *resultsPP
* will contain a malloc'ed string with the results
* of the GDB cmd.
* echoReq IN if true, echo command to the GDB UI window.
* timeout IN timeout (in ticks) to wait for response
* string from GDB. If 0 timeout, then
* this routine returns without waiting for
* a response.
*
* Returns:
* 0 if no error
*
* Called By:
* AppExecuteCmdLine
*
* Notes:
* This routine could be optimized better by blah, blah, blah...
*
* History:
* 9-Dec-1998 AB Created
**/

In general, use white space and comment lines intelligently to help illustrate the structure of a function. A cleanly
formatted source file helps tremendously in debugging and maintenance -- especially when being used by
someone other than the original author.

For example:

Int
PrvSendStr (PrvGlobalsType* gP, CharPtr cmdP)
{

DWord bytesWritten;
DWord err;

// --
// Error check. These conditions have to be checked beforehand by
// the caller (PrvExecuteCmd).
// --
assert (!gP->stdio.needInitCmds);
assert (!gP->stdio.needRestart);

// --
// Send the command line to GDB's stdin now.
// --

Handspring Development Tool Guide

- 15 -

if (!WriteFile (gP->stdio.stdInWriteH, cmdP, strlen (cmdP),
&bytesWritten, NULL))

{
err = GetLastError();
UIWinPrintOSErr (gP->uiWinH, "GdbExecuteCmdLine: ",

err, 0);
}

else
err = 0;

return err;
}

When making calls to functions with many parameters, insert comments for those parameter values whose
meaning is not clear from the name of the argument passed.

For example:

PrvWaitComplete (gP, false /*pingCheck*/, false /*retLinkOn*/,
true /*echo*/, 0 /*resultsPP*/, 500 /*timeout*/);

Every #endif and #else should have a comment describing what it corresponds to:

#ifdef foo
...

#else // not foo
...

#endif // not foo

#ifdef foo
...

#endif // foo

#ifndef foo
...

#else // foo
...

#endif // foo

#ifndef foo
...

#endif // not foo

When minor changes are made to a source file that has been fairly stable for a while, put a comment like the
following next to the change. This makes it easier to locate. The word chg should immediately follow the left
angle bracket, the date should be day-month-year, and the author's initials should follow. This comment string
can later be taken out of the source for better readability, after the change has proven to be stable.

// <chg 10-Dec-98 AB> Now check for nil pointer on entry

When you are aware of shortcomings in the code, or are putting a particular feature off until later, put a
DOLATER string commenting what needs to be done:

// DOLATER need to optimize this to work better with long filenames....

Handspring Development Tool Guide

- 16 -

2.6 Naming Conventions
For the most part, the Handspring naming conventions are the same as those used for Palm OS.

2.6.1 Capitalization
The general rule for naming functions, variables, and constants is to never use underscores. When a name
contains multiple sub-words, each subsequent sub-word is capitalized:

// Function names, global variables, and typedefs are initial upper case:
int AppFunctionName();
extern int AppGlobalVar;
typedef int AppInt;
typedef enum {appModeVerbose, appModeQuiet} AppModeEnum;

// Local variables, constants, enums values, and structure members
// are initial lower case:
int myLocalVar;
#define myBogusConstant 4
enum { myEnum1, myEnum2 };
typedef struct
{

int myMember1;
int myMember2;

} MyCustomType;

As illustrated above, global variables, functions, and names of types always start with a capital letter. Local
variables, constants, enums, and structure members always start with a lower case letter.

#define's that control build and compile time options are all capital letters with underscores between the
words:

#define ERROR_CHECK_LEVEL 0

2.6.2 Choosing Names
In general, don't be terse when naming functions or variables. An appropriate name is, in most cases, preferable to
inserting comments for explanations.

All exported/public functions, global variables, and constants should start with a short (2-4) character mnemonic
for the module or manager to which that function belongs. The sub-words in the name should progress from
general to specific.

For example:

MemInit ();
MemPtrNew ();
MemPtrFree ();
MemHandleNew ();
MemHandleFree ();

DWord MemDebugFlags;

#define memPtrNewFlagZeroInit 0x01
#define memPtrNewFlagHiHeap 0x02

Handspring Development Tool Guide

- 17 -

All private (static) functions and definitions within a single source file should be named with a prefix of Prv, such
as:

static void
PrvInitPrefs (int fromFile);
#define prvMyPrivateConstant 1

typedef struct
{

DWord member1;
DWord member2;

} PrvMyPrefsType;

Functions that must be shared between different source files within a particular module, but not exported to the
outside world, cannot be declared static. They should be named with Prv following the module mnemonic:

MemPrvInitGlobals ();
MemPrvFreeGlobals ();

All typedef names for structure types should end with the word Type. Simple scalar types should not have Type
on the end. All pointer types should end with Ptr. All enum types should end with the word Enum. When
naming enum constants, prefix each of the constants with the name of the enum:

typedef struct
{

DWord member1;
DWord member2;

} MyPrefsType;
typedef Word MyWord;
typedef Word* MyWordPr;
typedef enum

{
memOpenModeVerbose,
memOpenModeQuiet

} MemOpenModeEnum;

For local and global variables, append a P to the end of pointer variables and an H to the end of handle variables:

Byte* myDataP;
Handle myDataH;

2.6.3 Resource ID names
Nearly every Palm OS application has a header file called MyAppRsc.h. This header file defines the resource IDs
and menu command IDs for the resources and menus of the application. Following the conventions described
above, a typical Rsc.h header file should look like this:

// List View
#define rscListViewFormID 1000
#define rscListViewCategoryTriggerID 1003
#define rscListViewCategoryListID 1004
#define rscListViewTableID 1005
#define rscListViewLookupFieldID 1007
#define rscListViewNewButtonID 1008
#define rscListViewUpButtonID 1009
#define rscListViewDownButtonID 1010
// Details Dialog Box
#define rscDetailsDialogFormID 1200
#define rscDetailsDialogCategoryTriggerID 1204
#define rscDetailsDialogCategoryListID 1205
#define rscDetailsDialogSecretCheckboxID 1207
#define rscDetailsDialogOKButtonID 1208

Handspring Development Tool Guide

- 18 -

#define rscDetailsDialogCancelButtonID 1209
#define rscDetailsDialogDeleteButtonID 1210
#define rscDetailsDialogNoteButtonID 1211
#define rscDetailsDialogPhoneListID 1213
#define rscDetailsDialogPhoneTriggerID 1214
// Menu Bars
#define rscListViewMenuBarID 1000
#define rscRecordViewMenuBarID 1100
#define rscEditViewMenuBarID 1200

// Menu commands
#define rscListViewRecordSendCategoryCmd 100
#define rscListViewRecordSendBusinessCardCmd 101
// Delete Note Alert
#define rscDeleteNoteAlertID 2001
#define rscDeleteNoteAlertYesButtonIndex 0
#define rscDeleteNoteAlertNoButtonIndex 1

Note that all the defines start with rsc. The next part of the name should contain the form or dialog name, like
ListView, or DetailsDialog. The next part of the name should describe the area of the form, if applicable,
such as Category. The last part of the name should contain the object type followed by ID, such as ButtonID,
or FieldID.

Menu commands are named similarly to form object IDs, except that they are followed by Cmd instead of ID.
Likewise, dialog button indices end with Index.

2.6.4 Filenames
Filenames should be named following the same conventions as used for functions: initial capital letter, sub-words
capitalized, no underscores, and sub-words progressing from general to specific:

MemEntry.c
MemHeapUtils.c
MemPtrUtils.c
MemMgr.h

Private include files for a particular module or manager should have Prv on the end of them:

MemPrv.h
SystemPrv.h

Handspring Development Tool Guide

- 19 -

2.7 Basic Types
In order to make code as portable as possible, avoid the use of the standard C types, such as int, long, short, etc.
These types are different sizes, depending upon the different platforms and compilers. Instead, use the basic type
names below that are defined in the header file <Common.h> (<PalmTypes.h> in Palm OS 3.5). This header file
contains #ifdefs to guarantee that the basic types below are the same size on all platforms and compilers.

In general, function parameters should always be declared using fixed size types so that they remain portable even
when different functions within a system are compiled using different compilers. The variable size types below
(Int, UInt, etc.) should only be used for local variables. Avoid declaring function parameters using enums, since
the size of an enum can vary from compiler to compiler.

Table 1. Field Types

Format Size Sign Use…
Palm OS

3.1
Palm OS

3.5

Byte UInt8 8 bits unsigned …when you need 8 bit quantities

SByte Int8 8 bits signed …when you need 8 bit quantities

Word UInt16 16 bits unsigned …when you need 16 bit quantities

SWord Int16 16 bits signed …when you need 16 bit quantities

DWord Int32 32 bits unsigned …when you need 32 bit quantities

SDWord Int32 32 bits signed …when you need 32 bit quantities

UChar Uchar 8 bits unsigned …with unsigned 8 bit character arrays

Char Char 8 bits signed …with signed 8 bit character arrays

Boolean Boolean 8 bits unsigned …when you need on/off boolean quantities

UInt UInt at least 16 bits unsigned …only for local variables, never for function parameters

Int Int at least 16 bits signed …only for local variables, never for function parameters

ULong at least 32 bits unsigned …only for local variables, never for function parameters

Long at least 32 bits signed …only for local variables, never for function parameters

Handspring Development Tool Guide

- 20 -

3 Handspring Palm OS GNU Tools – Getting Started

The following diagram shows the general process of getting started with Handspring’s development tools. We’ll
cover each of these steps in sequence to get you developing quickly.

Figure 1. Getting Started with Development Tools

First Step:

Download The Tools

! Tools

! Sample Project

! Utilities

! Documentation

Second Step:

Install and Configure

! Install the tools

! Install Handspring Header file

! Copy a sample project

! Configure your build options

Third Step:

Software Development

Start with the sample project to verify your tools
environment.

Fourth Step:

Program and ROM Build

! Build the sample project

! Generate a ROM image (if applicable)

Fifth Step:

Debug

! Debug applications using the emulator
(POSE)

! Debug software on a memory module on a
handheld device.

Handspring Development Tool Guide

- 21 -

3.1 First Step: Download The Tools
Everything that you need to get started can be downloaded from the Handspring website.

3.1.1 If You Are New to GNU C Development
It is worthwhile to understand the general GNU C development environment and tools before diving into the
nuances of Springboard development. The on-line documentation listed in the GNU References chapter may be
helpful. In addition, third-party books are available covering all varieties of UNIX-based development tools (e.g.,
O’Reilly & Associates). You may find it particularly useful to review documentation covering the Bash shell,
GNU C compiler, and make utility.

Go to: http://www.oreilly.com/

3.1.2 Development Environment and Tools
Go to: http://www.handspring.com/developers/sw_dev.jhtml

Download PalmOSGNUToolsWithCygwin. This is Handspring's Palm OS GNU Tools with Cygwin GNU
utilities for Windows.

Download HandspringHeaders.exe. These header files are required to develop Springboard module
applications with plug-and-play capability.

3.1.3 Sample Projects
Go to: http://www.handspring.com/developers/sw_dev.jhtml
• Download Tex2Hex. This is a generic GNU project for Palm OS applications. This is a generic Palm OS

application with no Handspring specific calls.
• Download DiagRefModule (optional). This is a reference for Springboard communications modules. This

sample project includes a custom serial library and simple terminal program that can be used with a
Springboard module containing a UART, Flash memory, and other common components. Full details of
this module can be found on the Application Note entitled Diagnostic Reference Module on the Handspring
website.

• This may also be a good point to obtain Springboard hardware for development purposes. A 8MB Flash
module can be used to test software that will reside on a module. A Diagnostic Module can be useful
when examining source code that implement Springboard specific features.

Go to: http://www.handspring.com/developers/tech_notes.jhtml

3.1.4 Utilities
Go to: http://www.handspring.com/developers/sw_dev.jhtml
• Download DebugPrefs. This is a useful utility that enables you to easily enter debug and console modes

on a Handspring handheld either through the serial or USB ports. It also includes features that help trap
Fatal Exception errors.

• Download Palm-Debugger. This is an updated debugger that works with Windows 2000.

3.1.5 General Documentation
Handspring's Development Guides contain detailed hardware and software documentation on the different
Handspring products including the Springboard Expansion Slot. The manuals can be found on our web site at:

http://www.handspring.com/developers/documentation.jhtml

Developing software for Handspring handhelds is the same as developing for other Palm OS-based systems. The
Palm web site (http://www.palmos.com/dev/support/docs/) contains a lot of information covering standard Palm
OS development. Some specific reading includes:

• Palm OS SDK Reference

http://www.oreilly.com/
http://www.handspring.com/developers/sw_dev.jhtml
http://www.handspring.com/developers/sw_dev.jhtml
http://www.handspring.com/developers/tech_notes.jhtml
http://www.handspring.com/developers/sw_dev.jhtml
http://www.handspring.com/developers/documentation.jhtml
http://www.palmos.com/dev/support/docs/

Handspring Development Tool Guide

- 22 -

• Palm OS Programmer's Companion

• Development Tools Guide

• Recommendations on third-party books.

This site also contains specific documentation regarding Palm OS releases that may be helpful. These are very
important to follow to maintain compatibility across difference devices.

• Making Your Application Run on Different Devices discusses writing software that works across Palm OS
releases. This section is located in the Good Design Practices chapter in the Palm OS Programmer's
Companion.

• Compatibility Guide covers differences between various Palm OS releases. Handspring Visor is based on
Palm OS 3.1. This section is located in the Palm OS SDK Reference.

Handspring Development Tool Guide

- 23 -

3.2 Second Step: Install and Configure

3.2.1 Installation
• Install the development tools that you downloaded.
• Install the Handspring header file.
• Create a project directory and copy the sample Tex2Hex project there. After you have installed the tools,

you will find an area for sample projects in a directory named /PalmDev/Samples

3.2.2 Configuration
• The installation process creates all the necessary mount points, paths, and other configuration details;

however, to review how your system is setup, the details of the installation are covered in the next chapter
(Handspring Palm OS GNU Tools, Manual Installation chapter).

• Set your build options. These are standard GNU GCC options. In the SDKs directory, there is a
subdirectory called BuildOptions\Build. Using the Cygwin shell, run the makefile in this directory
with the appropriate options.

>make <option>

optsDev - set std development options (affects all makefiles)
optsTest - set std test options (affects all makefiles)
optsRel - set std release options (affects all makefiles)

• Configuring your tools to work with Microsoft Developer Studio is covered in the next chapter.

Handspring Development Tool Guide

- 24 -

3.3 Third Step: Software Development
Here are some tips that should make development in the Handspring environment easier.

• Handspring extensions are defined in HsExt.h and are documented in the Springboard Development
Guide.

• Review Handspring Coding Standards. All sample code from Handspring will follow these conventions.
• C source files are created and edited in the /Src directory of your project.
• Resource files that describe Palm OS resources -- like bitmaps and forms -- are created and edited in the

/Rsc directory of your project. The resources are compiled by Palm-RC (as described later in this
guide). The resource types are described in Palm OS SDK documentation. In particular the Palm OS
Companion Guide covers different Palm OS resource types.

• The project makefile is created and edited in the /Build directory. The compiler, linker, Palm-RC, and
other tools (as appropriate) are called from this makefile. BASH scripting and make commands can be
found later in this guide. As appropriate, Palm-MakeROM is called here to create a ROM image. An
example of this can be found in the DiagRefModule sample project.

Handspring Development Tool Guide

- 25 -

3.4 Fourth Step: Program and ROM Build

3.4.1 Build Process
• Enter the Bash shell and execute the makefile in your sample project’s /Build directory.
• Intermediate files are stored in the /Obj directory and are kept or deleted depending on your

BuildOptions setting.
• Symbol files for debugging are generated in the /Obj directory.
• The executable .prc file is copied from the /Obj directory to the /prc-tools/bin/Device directory.

3.4.2 Generate a ROM Image
• A sample of this process is in the DiagRefModule sample project. The Palm-MakeROM utility is called

from the project makefile in the /Build directory.
• Palm-MakeROM takes parameters specified in the makefile such as ROM access time and .prc files to

include, and generates a .bin file. This .bin file can be programmed onto a Flash module ROM (like the
Handspring 8MB Flash Module) through either the Palm-Debugger, or an end-user oriented utility
called CardUpdaterMaker. The Palm-MakeROM reference is included in this guide.

3.4.3 Creating Flash ROM Updates for Customers
• Customers need a way to upgrade developer’s modules in the field. To meet this requirement,

Handspring has created an SDK called CardUpdaterMaker. This can be found on our website at:

http://www.handspring.com/developers/sw_dev.jhtml

• The CardUpdaterMaker SDK is designed to call your project makefile to build the latest version of your
prcs.

• The .bin file created by your project makefile is then used and incorporated into an Updater .prc that
CardUpdaterMaker builds.

• The final Updater .prc is placed in the /prc-tools/bin/Device directory.
• Customers can use this program to easily update the Flash ROM built into your module.

http://www.handspring.com/developers/sw_dev.jhtml

Handspring Development Tool Guide

- 26 -

3.5 Fifth Step: Debugging

3.5.1 Debugging on a Handheld
• Once the .prc is made, it can be copied to the handheld through the Install Tool and Hotsync, or via

the Palm-Debugger.
• On the handheld, the DebugPrefs utility can be used to force Console and Debug modes to use either the

serial or USB port. This will aid in debugging your application.
• References to the full Palm-Debugger application can be found later in this guide.

3.5.2 Debugging on the Emulator (POSE)
POSE can be used to speed up the debugging process. Once the .prc is made, you can drag-and-drop it onto the
Palm OS Emulator (POSE). Note that ROM images are not included with POSE. There are several ways to
obtain the appropriate ROM files for the POSE that will emulate Handspring hardware. These methods are
referenced on Handspring’s website:

http://www.handspring.com/developers/tech_pose.jhtml

Full documentation on the POSE can be found on the Palm website.

http://www.handspring.com/developers/tech_pose.jhtml

Handspring Development Tool Guide

- 27 -

4 Handspring Palm OS GNU Tools

4.1 About the Handspring Palm OS GNU Tools
The Handspring Palm OS GNU (HPG) tools is a complete set of development tools for creating and debugging
applications for Handspring Palm OS devices. As the name implies, these tools are based on the Free Software
Foundation's GNU tools. The HPG tools include a C compiler, a resource compiler and ..prc builder and a
source-level debugger for debugging applications, extensions, or libraries.

The source code for the GNU tools is freely available on the Internet under terms of the GNU General Public
License, as are all derivatives based on the GNU source code, including the HPG tools.

The GNU source code has been ported to many different platforms and operating systems and, in general, the
HPG tools can be easily ported to any platform as well. Internally, though, these tools are only tested and used
extensively on Windows NT/2000 and Windows 98 on x86 PCs, so your “mileage may vary” if you use them on a
different platform or OS.

The HPG tools were originally developed starting from the prc-tools-0.5.0 distribution provided by Jeff Dionne.
Since then, they have been upgraded to use the prc-tools 2.0 toolset maintained by Palm, Inc. Handspring’s
approach is to build and run the HPG tools using Cygnus's cygwin32 running on Windows NT/2000 and
Windows 98. Cygnus provides a set of GNU executables, including a Bash shell, make, sed, etc., that run on top
of Windows and use the Windows file system. This solution is ideal because it provides all the power and
flexibility of a Unix-like environment -- including powerful make and scripting abilities -- as well as access to
traditional Windows applications all on one machine.

In addition to the traditional GNU command line tools, the HPG toolset also provides a Windows version of the
Palm OS Debugger. This application provides multiple windows for debugging a Palm OS device, and features:

• A window for assembly-level debugging.

• A window for shell-like functions (such as getting a directory listing of databases on the Palm OS device,
and getting heap dumps).

• A window for source-level debugging.

• A simple scripting environment.

• Source-level debugging support (reads symbol files generated by the Palm OS gcc compiler.)

The PalmDebugger application can "talk" to a real Palm OS device over a serial port or USB. It can also talk to a
virtual Palm OS device running as the Palm OS Emulator Windows application over TCP/IP. There is a
Communications menu in PalmDebugger that allows you to select a way to talk to the Palm OS device.

http://www.fsf.org/
http://www.fsf.org/copyleft/gpl.html
http://www.fsf.org/copyleft/gpl.html
ftp://uiarchive.cso.uiuc.edu/pub/systems/PalmOS/prc-tools.0.5.0.tar.gz
mailto:Jeff@RyeHam.EE.Ryerson.Ca
http://www.palmos.com/dev/tech/tools/gcc/
http://www.palm.com/
http://sourceware.cygnus.com/cygwin/

Handspring Development Tool Guide

- 28 -

4.2 Installation
To install the tools, simply run the supplied installer. This will install the Cygwin tools (if necessary) and the
Handspring tools. If the installer detects that the Cygwin tools are not already installed on your system, it will
enable that checkbox by default.

4.2.1 Manual Installation Of Tools
If you're curious, the following instructions describe how to copy the files and make the necessary batch file and
registry file changes manually. All of the following are performed automatically if you run the installer
application:

1. Install the Beta20 release of the Cygwin tools.

2. After installing the Cygwin tools, you will need to define the Unix paths to each of your hard drive
partitions, and you'll need to define the Unix path /prc-tools to point to the directory that will point to
your prc-tools directory. This information is saved in the registry by the "mount" command, so it must
be done only once. To create the paths, launch the Cygwin Bash shell from the Start menu and enter the
following at the command prompt, modifying appropriately for your particular setup:

mount C: / # This makes C: your root drive
mount D: /d # If you have a D: drive...
mount E: /e # If you have an E: drive...
mount F: /f # If you have an F: drive...
mount E:\\prc-tools /prc-tools

If your prc-tools directory will
be at E:\prc-tools

If you make a mistake with the mount command, use the "umount" command to unmount a path. For
example:

mount F: /usr/local
umount /usr/local
mount E: /usr/local

If you make a mistake when mapping the root drive, do the umount and the mount in one line, using a
semi-colon:

mount D: /
umount /; mount C: /

Note that if you include a backslash in the DOS path of your mount command, you need to use two
backslashes (e.g., 'mount C:\\bin /bin').

3. Next, follow the instructions below for your particular operating system to ensure that the Cygwin tool
executables and the .prc-tools executables are in your PATH setting:

Windows NT/2000:

In Windows NT and Windows 2000, go to the Properties panel of the System control panel applet and
make sure the path to the prc-tools\bin directory is included in your path variable and make sure the path
to the Cygwin tools is included as well. Here's an example:

PATH=E:\prc-tools\bin;C:\cygnus\CYGWIN~1\H-I586~1\bin;%OLDPATH%

Note that you can use the syntax %VARNAME% when defining the value of an environment variable in the
Properties panel. In the above example, the previous path setting was copied into a variable named
OLDPATH, and the PATH variable was defined in terms of %OLDPATH%.

Handspring Development Tool Guide

- 29 -

You also need to define a few environment variables in order to be able to use the Visual Studio IDE to
create a browser database and browse through Palm OS project source files:

PRCTOOLSDIR=E:\prc-tools
PALMDEVDIR=E:\prc-tools\PalmDev
PALMOSINC=%PALMDEVDIR%\sdk-3.5\include
HSINCDIR=E:\prc-tools\PalmDev\include\Handspring

Optionally, you can also add a HOME variable which will be used by the Bash shell when you type in cd
without any arguments or when you use the ~ character in the Bash shell as a shortcut to your home
directory. This variable must be defined as a Unix-style path. For example:

HOME=/e/projects

In Bash, to go to this directory type:

> CD ~

Windows 95/98:

In Windows 95/98, edit your C:\Autoexec.bat file to ensure that the path to the prc-tools\bin directory is
included in your path variable. Make sure the path to the Cygwin tools is included as well.

You also need to define a few environment variables in order to be able to use the Visual Studio IDE to
create a browser database and browse through Palm OS projects.

Optionally, you can add a HOME variable, which will be used by the Bash shell when you type in cd
without any arguments, or when you use the ~ character in the Bash shell as a shortcut to your home
directory. This variable must be defined as a Unix-style path. For example:

HOME=/e/projects

In Bash, to go to this directory type:

> CD ~

You should also make a call to the Visual Studio batch file that sets up environment variables for
command line Visual Studio tools as well.

Here is a sample autoexec.bat file. This assumes that you have copied the VCVars32.bat file from the
Visual Studio directory to the root directory of your C: drive.

SET PATH=c:\CYGNUS\CYGWIN~1\H-I586~1\BIN;%PATH%
SET PATH=E:\prc-tools\bin;%PATH%
SET HOME=/e/projects
SET PRCTOOLSDIR=E:\prc-tools
SET PALMDEVDIR=E:\prc-tools\PalmDev
SET PALMOSINC=%PALMDEVDIR%\sdk-3.5\include
SET HSINCDIR=E:\prc-tools\PalmDev\include\Handspring

CALL VCVars32.bat

Finally, you will need to add the following line to your C:\Config.sys file. This is necessary in order to
launch a build using the GNU tools directly from the Visual Studio IDE, because the default variable
environment space in the Windows 95/98 DOS shell is too small:

SHELL=C:\COMMAND.COM /p /e:4096

4. Copy the entire prc-tools directory to your hard drive to the location you chose in step 2. In this
example, the prc-tools directory is copied to the root level of the E: drive.

Handspring Development Tool Guide

- 30 -

Alternately, if you would rather re-build all of the HPG tools from the sources, launch the Cygwin Bash
shell from the Start menu, and build the Palm tools using the following commands, adjust the cd
command argument to where you installed the sources. This makefile for the tools will always create the
directory /prc-tools and place the built set of tools into that directory.

cd /e/projects/tools/build
make

5. Make a shortcut to the Palm-Bash.bat file found in the /prc-tools/bin directory and save it to your desktop
(or some other convenient place). This shortcut opens up a DOS window and runs the Bash shell in it.
This window should be used to execute any of the command line tools (e.g., make, m68k-palmos-gcc)
because it sets up all additional required environment variables correctly for you (besides the static ones
you already setup in step 3).

6. In order to be able to launch the GNU make tool directly from Visual Studio, you will also need to add
the paths to the Cygwin and .prc-tools executables to Visual Studio's preferences. To do this:

a. Launch Visual Studio and select Tools > Options.

b. Select the Directories tab

c. Select Executable files from the Show directory’s for: pop up list.

d. Add the following directories to the list (note that this line may be slightly different on different
systems):

" C:\Cygnus\B19\H-i386-cygwin32\bin

" E:\prc-tools\bin

4.2.2 Using the Function Pop-up Developer Studio add-in
A Microsoft Developer Studio add-in is also provided with the HPG tools. This provides a convenient "function
pop-up" window that is very useful during editing in order to go to a particular function in a source file. Unlike
the built-in browser functionality that provides a similar capability, the function pop-up works before the code is
compiled, and can display functions either in alphabetical order (if the [Shift] key is held down) or the order in
which they appear in the source file.

To configure Developer Studio to use the function pop-up, do the following:

1. Choose the Add-ins and Macro Files tab from the Tools > Customize menu item dialog.

2. Click the Browse button and select the FunctionPopUp.dll file from the prc-tools\bin directory into which
the installer installed the tools. You will need to change the Files of type option to Add-ins (.dll) in
order to browse for DLL files.

3. This creates a toolbar icon on your screen that will activate the function pop-up for the top-most editor
window. If you would also like to set up a keyboard shortcut for this command, do the following:

a. Switch to the Keyboard tab of the same dialog

b. Change the Category to Add-ins and select FunctionPopUpCommand from the
Commands field.

c. Put the cursor in the Press new shortcut key field, click Ctrl+, then click the Assign
button.

Handspring Development Tool Guide

- 31 -

d. Put the cursor into the Press new shortcut key field, click Ctrl+Shift+; then press the
Assign button.

Because the function pop-up displays functions in alphabetical order when the shift key is held down,
these assignments will cause Ctrl+ to bring up the function pop-up in file order and Ctrl+Shift+ to bring
it up in alphabetical order.

Handspring Development Tool Guide

- 32 -

4.3 Overview of Available Tools

4.3.1 Palm-Specific tools
Used for generic Palm OS programming on the Handspring and Palm product lines.

Palm-Debugger: Assembly- and source-level debugger and console window for debugging an actual Palm OS
device over the serial or USB port, or through TCP/IP to the Palm OS Emulator.

Palm-OSEmulator: Emulates a Palm OS device as an application on the desktop. This is a desktop (Windows,
Macintosh, and Linux) application that emulates a Palm OS device.

Palm-MakeROM: Creates a ROM file image from a set of .prc files. Can also be used to print information on an
existing ROM image, break down an existing ROM image into a set of .prc files, or patch an existing ROM image
by adding ROM tokens.

Palm-RC: Utility for creating a .prc file by combining data from one or more of the following: text resource
description files, .rsrc binary resource files created by Metrowerks Constructor or ResEdit, or linked object code
output from the m68k-palmos-gcc compiler/linker. This utility can also convert most of the resources in an
existing .prc file back into text resource description files.

Palm-PrcDump: Utility for dumping the contents of a .prc file in hex for examination and debugging purposes.

Palm-Pretty: Utility for re-formatting source code to conform to the Handspring coding conventions. This is a
Bash script file that passes the appropriate command line options to the GNU indent program. Type Palm-
Pretty by itself on the command line for usage information.

Palm-RunGnu.bat: Batch file that can be called from the Visual Studio IDE or from a DOS prompt to run a
command line GNU tool (such as "make") with all appropriate environment variables set up correctly for the
Palm-GNU tools.

Palm-Bash.bat: Batch file that will launch the GNU Bash shell for interactive use with all the correct environment
variables set up for using the Palm-GNU tools. The batch file uses Palm-RunGnu to launch the Bash shell in
interactive mode.

Note: Most of the tools have built-in help available when they are invoked with the '--help' command-line option.

4.3.2 General Purpose GNU tools
These tools are documented in the GNU References, later in this guide.

bash - GNU command line shell with scripting support, filename expansion, etc.

make - GNU make utility.

indent - GNU program for reformatting source code.

4.3.3 GNU tools for Palm OS development
These tools are documented in the GNU References, later in this guide.

m68k-palmos-gcc: C compiler, assembler, and linker.

m68k-palmos-gdb: Command line-based source-level debugger.

m68k-palmos-objdump: Object code dumper and disassembler. Can also be used to dump symbol information
contained in object files or final executables.

http://www.handspring.com/developers/tech_pose.jhtml

Handspring Development Tool Guide

- 33 -

4.4 Pitfalls to Avoid!

4.4.1 make
There is a bug in the VPATH treatment of make when running in Windows 98 (and likely 95 as well). When
using VPATH, make is case-sensitive, whereas normally under Windows it is not. If you've checked out the
sources to the GNU tools (binutils, for example) under Windows NT and then switch to Windows 95, the names
of the files that fit in 8.3 will appear as all uppercase in a directory listing and won't be recognized by make when
it uses VPATH.

In order to run Bash in Windows95/98, you need to increase the size of the environment space to 4096 bytes.
Otherwise, you will get an out of environment space error. You can do this from the Properties panel for
the cygwin shortcut or by launching command.com with the /e:4096 command line option.

4.4.2 m68k-palmos-gcc
When compiling large applications (>32K of code), you may see the following error message:

Tex2Hex.s: Assembler messages:
Tex2Hex.s:84: Error: Signed .word overflow; switch may be too large;
42146 at 0x50ca

This is usually the result of the compiler attempting to reference a pre-initialized global variable. To determine
the "real" line that is causing the problem, pass the -save-temps option to the compiler and look at the output
.s file that is generated.

This problem is due to the compiler using intermediate 16-bit numbers to represent pre-initialized global variable
references in the code. These 16-bit offsets start at higher numbers based on the amount of code you have.
Unfortunately, there doesn't seem to be any workaround for this except for not using pre-initialized globals in the
first place. You can either declare them uninitialized and then initialize them manually in at the start of
PilotMain(), or if they are never changed, put the const keyword in front of them so that they end up in the
code segment.

4.5 Using the Tools
This section provides an overview of how to use the HPG tools for developing and debugging a Palm OS
application. The HPG tools can be used to compile and build Palm OS applications either directly from the
command line or from an Integrated Development Environment (IDE) such as Microsoft's Visual Studio. The
following examples illustrate how to use the tools with Visual Studio.

Besides the obvious benefits of collecting all your source files into a single project window, the IDE also provides
source code browsing support. With the appropriate Visual Studio project file, you can use the IDE's built-in
browser functionality for locating function prototypes, type and macro definitions, and function implementations
for your application. You can also run the makefile for your application directly from the IDE and view the output
from the make utility in the IDE's output window.

The general steps for creating, building, and debugging a Palm OS application are as follows:

1. Create a makefile and Visual Studio project for your application. This is typically done by copying a pre-
existing project, such as the Tex2Hex sample.

2. Create .h and .c source files for your application code.

3. Create a Palm-RC .rcp text file describing the resources in your application.

4. Build your application using the Build menu in the IDE. This does two things: it fires off the GNU make
utility which runs through your makefile to build your Palm OS application. It also compiles all the

http://www.handspring.com/developers/sw_dev.jhtml

Handspring Development Tool Guide

- 34 -

sources using the Visual Studio compiler in order to generate a browser database. The x86 object code
output from this compiler is not used, of course.

5. If you haven't launched the console support on the Palm OS device yet, do so now by entering
Shortcut - . - 2 using Graffiti (that's the shortcut stroke, followed by two taps to generate a
period, followed by the number 2).

6. Use the PalmDebugger application to load your application onto the device and debug it. PalmDebugger
provides both assembly and source-level debugging (using a symbol table generated by the m68k-palmos-
gcc compiler) as well as a "console" shell window.

7. Switch back to the Visual Studio IDE, edit your source code as needed, then repeat from step 4.

Handspring Development Tool Guide

- 35 -

5 GNU References

The GNU Toolkit upon which the Handspring Palm OS GNU Tools are based, is well documented. Here are
links to the full documentation for reference purposes.

Main GNU Web Page:

http://www.gnu.org

GNU Miscellaneous Documentation:

http://www.gnu.org/doc/doc.html

GNU Manuals Online:

http://www.gnu.org/manual/manual.html

GNU Docs in Japanese:

http://www.gnu.org/software/gnujdoc/gnujdoc.html

Make Overview:

http://www.gnu.org/software/make/make.html

GNU Make Manual:

http://www.gnu.org/manual/make-3.79.1/html_mono/make.html

http://www.gnu.org/
http://www.gnu.org/doc/doc.html
http://www.gnu.org/manual/manual.html
http://www.gnu.org/software/gnujdoc/gnujdoc.html
http://www.gnu.org/software/make/make.html
http://www.gnu.org/manual/make-3.79.1/html_mono/make.html

Handspring Development Tool Guide

- 36 -

6 Palm-MakeROM Overview

6.1 Description
Of all the utilities in the Handspring GNU Tools package, Palm-MakeROM is one of the most important and
most used tools for Springboard Module development. This tool is responsible for generating the ROM image
file that will be flashed onto the Module’s Flash memory. The utility will take in standard Palm OS .prc files and
assemble them into the appropriate format for the .bin file. The .bin file will be in Motorola (big-endian) byte
order. The utility will also set the appropriate header information for the ROM module (as specified on the
command line). In addition to generating the Flash ROM image files, the utility can also be used to print info on
an existing ROM image, break down an existing ROM image into a set of prc files, or patch an existing ROM
image by adding ROM tokens.

6.2 Usage Summary
Palm-MakeROM --help
Palm-MakeROM <lots `o options…see below>

General Options
-h, --help Print this help message.
-o <outFile> Specify the filename, outfile, for the .bin file.
-noSpaces Replace spaces by underscores (_) in .prcfilenames when doing –op

break.
-noForceReadOnly Do not force each prc to be marked as read-only. By default Palm-

MakeROM will set each prc as read-only. Using this option will not
force each prc in the ROM image to be marked as read-only.

-copyPrevention Force the copy prevention (beam prevent) bit to be set in the prc
files in the ROM image.

-autoSize Automatically size the ROM image to fit the size of all the input
files. The –romBlock option will be an optional maximum size
parameter. When using this option, the –chRomTokens parameter
is not needed. Use of this flag is recommended.

Modes of Operation (only 1 can be specified)
-op info
<romName>

Print info on the specified ROM image.

-op patch
<romName>

Used when patching a previously created ROM image. This will
specify the file to patch. NOTE: When patching ROM images,
this must be the first option on the command line.

-op join
<smallROM>
<bigROM>
<bigROMOffset>

Join Small and Big ROM image files into a single ROM image.

-op split
<romName>
<bigROMOffset>

Split romName into a Small and Big ROM image files with names of
outFile1.bin and outFile2.bin.

-op create Used to create a new ROM image. The prc files used for this ROM
image are specified with the –romDB and –romBootDB options.
The output ROM image file name is specified with the –o option.

-op break
<romName>

Extract the prc files from a given ROM image. The resulting prc files
will be written into the current working directory.

Handspring Development Tool Guide

- 37 -

Card Header Parameters
-base <start> Base address of card specified in hexadecimal (example:

0x10000000).
-hdr
<cardHdrOffset>

Offset from the base of the module memory to the module header.
This must be 0x08000000 for all Handspring removable modules.
This offset is added to the module’s logical base address in Palm OS
of 0x20000000. With this setup, the logical address of the module’s
ROM image is at 0x28000000.

-chRomTokens
<offset> <size>

This option is not required if the –autoSize option is used. The
offset and size of the ROM token area on the module. This area is
used to store data specified in the –tokStr parameter. The offset
should be set to the end of the ROM minus space for the tokens
themselves. In the above example, the ROM offset is at 0x08000000
and its size is 0x10000 (64K), so the ROM tokens are put at
0x08000FF00 with a size of 0x100.

-chBigRomOffset
<offset>

Offset to Big ROM from card base (example: 0x00C08000).

-chName <name> The ASCII card name of the module as registered with Handspring
Developer’s web site. Must be in quotes and can be up to 31
characters in length. (example: "HandspringCard").

-chManuf <name> The ASCII manufacturer name as registered with Handspring
Developer’s web site. Must be in quotes and can be up to 31
characters in length (example: “Handspring, Inc.”).

-chVersion
<version>

The 16-bit version number of the module. The developer
determines the version number to be used in this parameter. A
typical use is to store the major version in the high byte and the
minor version in the low byte.

-chStack
<initStack>

Initial stack pointer (example: 0x00003000).

-chChecksum
[<bytes>]

Number of bytes to use for checksum calculation specified in
hexadecimal. If no parameter is specified, use the entire ROM image
for the checksum calculation (example: 0x00001000).

-chReset0 Reset vector should point to alias of card header at 0x00000000.
-chZCrDate Set the creation date to 0.

Note: Used for testing purposes.
ROM Store Options
-romName <name> Name of the ROM store on the module. This parameter is for

descriptive purposes only. Must be in quotes and can be up to 31
characters in length (example: "ROM Store").

-romBootDB
<filename>

Name of boot code prc file

(boot=10000 becomes reset vector)

(boot=10001 becomes initCodeOffset1)

(boot=10002 becomes initCodeOffset2).

Handspring Development Tool Guide

- 38 -

-romHalDB
<filename>

Name of HAL prc file

(boot=10000 becomes reset vector) and -romBootDB's reset vector
gets moved into initStack field of card header.

-romPalmHalDB
<filename>

Replaces -romHalDB option for Palm OS 3.5

(boot=19000 becomes halDispatch in CardHeader).
-romDB
<fileName>

Name of prc file to put in ROM store. Must be in quotes (example:
“MyApp.prc”).

-romBlock
<offset> <size>

The offset and size of the ROM area on the module relative to the
module base address. The offset must be 0x08000000 for all
Handspring modules. The size is the total size of the formatted
ROM area used by the Palm-MakeROM tool, which can be less than
or equal to the size of the ROM chip itself. This option is not
required if the –autoSize option is used.

RAM Store Options
-ramBlock <offset>
<size> ...

Offset and size of RAM block on the card specified in hexadecimal
(example: 0x0 0x0).

ROM Token Options
-tokStr <type>
<str>

The ID and value of a ROM token to be placed in the ROM token
area specified by the –chRomTokens option. This option can be
repeated for every ROM token that needs to be included. The ID
must be a string of four characters. The value can be any number of
characters long.

All Handspring removable modules should contain an 'HsAT' token
with a value specifying the required access time of the chip selects in
nanoseconds. For modules without this value, the chip select access
time will be set to the slowest possible value allowed by the base unit
hardware.

For example, -tokStr HsAT 200, will set the access time to 200
ns.

Optionally, you can also include an 'HsWR' ROM token. The
presence of this token (the value is ignored) tells the system to launch
the module welcome application on the module if the module is
inserted during a soft or hard reset. Normally, the module welcome
application is not launched after a reset.

(example: -tokStr HsWR 1.
-tokHex <type>
<str>

Include hex data as inline token.

(example: -tokHex "snum" "FFAABBCC")
-tokBin <type>
<filename>

Include binary file as pointer token.

-tokPrc <type>
<filename> <resType
<resID>

Include resource from prc file as pointer token.

6.2.1 Examples
A developer at Handspring, Inc. would like to place a new application on a 8MB Flash Module for testing
purposes. The application consists of a single game application along with a module Welcome application that

Handspring Development Tool Guide

- 39 -

will be used as a splash screen when the module is inserted. The developer has registered the module and
company name with Handspring, and all the applications have been built with the appropriate creator and type
codes. To make ROM size calculations easier, the developer will use the –autoSize option. The access time to
the module memory is 200 ns and will be specified with the HsAT token.

NOTE: The command line options have been split into multiple lines for easier reading. When using the
application, all the options must be on a single line.

> Palm-MakeROM -op create

-hdr 0x08000000

-chName "PatricksGames"

-chManuf "Handspring, Inc."

-chVersion 0x0100

-romName "ROM Store"

-autoSize

-tokStr HsAT 200

-romDB "WelcomeApp.prc"

-romDB "Gungnir.prc"

-o GamesROM.bin

After running the program, the output file GamesROM.bin will be in the current working directory. The
developer can then use this ROM image to flash a module for testing. As more applications are added to the
ROM module, the developer simply adds more –romDB arguments to the command-line options.

Another developer has received a ROM image from someone and would like to view the contents of this ROM
image. Use the following options to inspect an existing ROM image.

> Palm-MakeROM -op info FansomeROM.bin

General Info:

cardBase : 0x10000000

cardHdrOffset : 0x08000000

romBlockOffset : 0x08000000

romBlockSize : 0x00100000

CardHeader Info:

initStack : 0x00003000

resetVector : 0x00000000

hdrVersion : 4

flags : 0x0020

name : BigRedModule

manuf : Handspring, Inc.

version : 0x0100

creationDate : 0xB60350A7

numRAMBlocks : 0

blockListOffset : 0x08000200

readWriteParmsOffset: 0x00000000

Handspring Development Tool Guide

- 40 -

readWriteParmsSize : 0x00000000

readOnlyParmsOffset : 0x0800ff00

bigROMOffset : 0x00c08000

checksumBytes : 0x00001000

checksumvalue : 0x9541

ROMStore Info:

version : 1

flags : 0x0000

name : ROM Store

creationDate : 0x00000000

backupDate : 0x00000000

heapListOffset : 0x08000208

heap 0 offset : 0x08000212

initCodeOffset1 : 0x00000000

initCodeOffset2 : 0x00000000

databaseDirID : 0x080FFEEE

ROM Token info:

token 0 : HsAT, 3 bytes

Command line options to build:

-base 0x10000000

-hdr 0x08000000

-chName " BigRedModule"

-chManuf " Handspring, Inc."

-chVersion 0x0100

-chStack 0x00003000

-chRomTokens 0x0800FF00 0x000F0100

-romName "ROM Store"

-romBlock 0x08000000 0x00100000

-ramBlock 0x00000000 0x00000000

-romDB "CardWelcome.prc"

-romDB "FooBarApp.prc"

Yet another developer has received a ROM image, and for debugging purposes needs to extract all the prc files
from this ROM image.

> Palm-MakeROM –op break FunnyROM.bin

Writing out database: "CardSetupApp.prc"...

Writing out database: "CardWelcome.prc"...

Writing out database: "Jokes.prc"...

Handspring Development Tool Guide

- 41 -

The current working directory will contain the prc files listed above.

Handspring Development Tool Guide

- 42 -

6.3 Palm-RC

6.3.1 Description
Palm-RC is a resource compiler for PalmOS applications. The full manual for this utility is in the appendix of this
manual. The main difference between the Palm-RC for Handspring devices and the previous versions of Palm-
RC is 16-bit color support for Visor Prism. For more information on these items and other options for Palm-RC,
please consult Chapter 7, PalmRC User Manual.

6.4 HsSplit

6.4.1 Description
Splits the source file into a number of files of chunkSize bytes. The last output file may be smaller than chunkSize.
The output filenames begin with the source file name, and are followed by ".nnnn", where nnnn is a four digit
decimal number in the range 0000 - 9999. The source file is preserved.

6.4.2 Usage Summary
HsSplit --help
HsSplit -src <path> -chunkSize <# of bytes> -outDir <path> [-clobber]

Command Line Parameter Usage
--help Display the usage screen

-src <path> Source file

-chunkSize <# of bytes> Size of each output file in bytes

-outDir <path> Directory for the output files

-clobber If this option is specified, overwrite the existing files.
Otherwise do not overwrite.

6.4.3 Examples
A user wants to split the file, Handspring.bin of size 570,418 bytes into 10,000 byte sized files. The output file
should be in the current directory.

> HsSplit -src Handspring.bin –chunkSize 10000 –outDir .
Executing "hssplit -src Handspring.bin -chunkSize 10000 -outDir . ".
hssplit completed successfully: 58 files created (total size is 570418 bytes)

Resulting files range from Handspring.bin.0000 to Handspring.bin.0057 each of size 10,000 bytes except for
Handspring.bin.0057, which is 418 bytes.

6.5 Palm-PrcDump

6.5.1 Description
A utility that dumps the contents of a Palm OS prc file to the screen. This utility displays the header information
in an easy-to-read format and all the resource data in hex and ASCII values. This utility is useful for checking if
various header information was compiled incorrectly, such as: name, type, creator, version, or attributes. If you
are truly adventurous, you can use the hex data of the various resources to aid in debugging.

6.5.2 Usage Summary
Palm-PrcDump --help
Palm-PrcDump [-x] [-noData] <prcfile>

Handspring Development Tool Guide

- 43 -

Command Line Parameter Usage
--help Display the usage screen
<prcfile> The Palm OS prc file to dump
-x Print the raw data in hex without any special formatting
-noData Do not print the resource/record data. Useful for getting a quick

summary of the prc file without looking at the data.

6.5.3 Examples
A user needs to inspect the Tex2Hex application to verify that the creator code and the name were set properly
during compile time. The user does not care about the actual data in the resource.

> Palm-PrcDump -noData Tex2HexApp.prc
Name = 'Text to Hex'
Attributes = 0x0001

resourceDB : on
readOnly : off
appInfoDirty : off
backup : off
okToInstallNewer : off
resetAfterInstall : off
open : off

version = 1
creationDate = 0xB5BEFC22
modificationDate = 0xB5BEFC22
lastBackupDate = 0x00000000
modificationNumber = 0
appInfoID = 0x00000000
sortInfoID = 0x00000000
type = appl
creator = TxHx
uniqueIDSeed = 0x00000000
recordList.nextRecordList = 0x00000000
recordList.numRecords = 13
recordList.entries:
entry 0: 'code' #0 offset:0x000000D2
0000004E: 636F6465 00000000 00D2 code......
entry 1: 'data' #0 offset:0x000000EA
00000058: 64617461 00000000 00EA data......
entry 2: 'pref' #0 offset:0x00000126
00000062: 70726566 00000000 0126 pref.....&
entry 3: 'rloc' #0 offset:0x00000130
0000006C: 726C6F63 00000000 0130 rloc.....0
entry 4: 'code' #1 offset:0x00000132
00000076: 636F6465 00010000 0132 code.....2
entry 5: 'tFRM' #1000 offset:0x000007E2
00000080: 7446524D 03E80000 07E2 tFRM......
entry 6: 'tver' #1 offset:0x000008D2
0000008A: 74766572 00010000 08D2 tver......
entry 7: 'tAIB' #1000 offset:0x000008D6
00000094: 74414942 03E80000 08D6 tAIB.....╓
entry 8: 'Tbmp' #1000 offset:0x00000933
0000009E: 54626D70 03E80000 0933 Tbmp.....3
entry 9: 'Tbmp' #1001 offset:0x000009F6
000000A8: 54626D70 03E90000 09F6 Tbmp......
entry 10: 'MBAR' #1000 offset:0x00000B15
000000B2: 4D424152 03E80000 0B15 MBAR......
entry 11: 'Talt' #1000 offset:0x00000BC0
000000BC: 54616C74 03E80000 0BC0 Talt.....└
entry 12: 'Talt' #1001 offset:0x00000BFE

Handspring Development Tool Guide

- 44 -

000000C6: 54616C74 03E90000 0BFE Talt.....■

Resource: 'code' #0, 24 (0x18) bytes

Resource: 'data' #0, 60 (0x3C) bytes

Resource: 'pref' #0, 10 (0xA) bytes

Resource: 'rloc' #0, 2 (0x2) bytes

Resource: 'code' #1, 1712 (0x6B0) bytes

Resource: 'tFRM' #1000, 240 (0xF0) bytes

Resource: 'tver' #1, 4 (0x4) bytes

Resource: 'tAIB' #1000, 93 (0x5D) bytes

Resource: 'Tbmp' #1000, 195 (0xC3) bytes

Resource: 'Tbmp' #1001, 287 (0x11F) bytes

Resource: 'MBAR' #1000, 171 (0xAB) bytes

Resource: 'Talt' #1000, 62 (0x3E) bytes

Resource: 'Talt' #1001, 48 (0x30) bytes

Notice that the name and creator (boxed items in above output) are set to ‘Text to Hex’ and TxHx, respectively.
Notice that all the resources in the prc file were listed as well. If the -noData option were removed, you would
see the hex data associated for each resource.

Handspring Development Tool Guide

- 45 -

6.6 ToDos, ToMac, ToWin, ToUnix

6.6.1 Description
Utility to convert text files from one format to another. The source and destination formats it supports are DOS
(ToDos), Unix (ToUnix), and Macintosh (ToMac).

6.6.2 Usage Summary
Text file newline conversion utility
Usage: ToXXX [--help] <file>...

Command Line Parameter Usage
--help Display the usage screen
<file> File to convert. Program uses the same file as the output.

6.6.3 Examples
A user needs to convert the file, bleh.txt to Unix format.

> ToUnix.exe bleh.txt

Converting bleh.txt...

bleh.txt is now a Unix-formatted file, with the proper linefeed and carriage returns.

Handspring Development Tool Guide

- 46 -

7 PalmRC User Manual
Palm-RC is based on PilRC written by Wes Cherry (wesc@ricochet.net)

7.1 Description

Palm-RC A resource compiler/de-compiler and .prc builder for the Palm Pilot

7.2 Table of Contents
Usage

RCP file format

Resource Language Reference

International Support

Known Bugs

7.3 Usage
Palm-RC [<options>...]

Input file options:

-rcp <infile> Input .RCP text file of resource descriptions (Use '-' for stdin).

-rsrc <infile>
Input Macintosh format resource file as generated by Metrowerks'
Constructor or Apple's ResEdit.

-gccApp <infile>
Input application built with the Palm-gcc compiler/linker. This
will create code 0, code 1, data 0, rloc 0, and pref 0 resources from
the output of the Palm-gcc linker.

-gccCode <infile>
<resType> <resID>

Input file built with the Palm-gcc compiler/linker as PalmOS code
resource: <resType>=<resID>. Will also insure that <infile>
was not built to use any globals.

-gccCodeG <infile>
<resType> <resID>

Input file built with the Palm-gcc compiler/linker as PalmOS code
resource: <resType>=<resID>. Unlike -gccCode, this option
allows the code to use globals. This option is used to build "poor-
man's" multi-segmented apps and only works if all code segments
in the app are built with the same set of globals.

mailto:wesc@ricochet.net

Handspring Development Tool Guide

- 47 -

-prc <infile> Input existing .prc file. Usually used in combination with the -
patch option (to patch object code) or the -oRcp option (to dump
out existing .prc resources in .rcp text format).

-l <language> Compile resources for a specific language.

-I <path>
Search path for bitmap and include files. More than one -I <path>
option may be given. The current directory is always searched.

-F <encoding>
Compile resources for a specific font encoding. <encoding> can be:
Jp (Shift-JIS), B5 (Big-5), Hb (Hebrew), Ge, Sp, It, or Fr.

-maxBmpDepth <depth>

Don't include any bitmaps greater than the given depth (1, 2, 4, 8,
16, 24, 32 allowed).

Modification options:

-patch
<resType>
<resID>
<patchFile>

Patch given resource using info from <patchFile> which is a text file with this
format:

Version 1.0:
 [; comment]
 <offset> <oldData> <newData> [;comment]
 <offset> <oldData> <newData> [;comment]

where all numbers are in hex.

Example:

16A 001122 445566
22A ABBCDE ABBCDF

Version 2.0:
#PATCH_VERSION=2.0
[; comment]
<offset>.L, <old1>.W <old2>.W ..., <new1>.W <new2>.W ...
<offset>.L, <old1>.W <old2>.W ..., <new1>.W <new2>.W ...

where .L is a 32-bit value and .W is a 16 bit value. Simple addition, subtraction,
and parentheses are also supported.

-del
<resType>
<resID>

Remove given resource from output prc. This option is most useful when reading
in an existing prc to create a new one.

Handspring Development Tool Guide

- 48 -

Output types:

-o <outfile> (default: "out.prc") Output file name.

-oRcp <name> Generate .RCP and .BMP output files from resources. Usually used in
conjunction with the -prc option to convert resources from existing
Palm OS .prcs into source .RCP text files.

-overlayOf <name>
<langID> <countryID>

This option tells Palm-RC to construct the output file (specified by the -
o option) as an overlay database for the base prc file <name>.

When this option is present, an 'ovly' resource will be inserted (or the
existing one updated) into the <name> base prc file and the output prc file
will have a corresponding 'ovly' resource installed into it as well.

When this option is specified, the type and creator of the output prc are
obtained from the base prc, so the -type and -cr options must not also
be present.

The 'ovly' resource in the base prc basically contains a list of resources in
the base prc along with their lengths and checksums.

The 'ovly' resource in the output prc file contains a list of resource in the
overlay database. When the database is opened, the PalmOS uses the
information in the base and overlay database overlay resources to validate
that the overlay is in fact a valid overlay of the base prc.

Output options:

-name <prcName> (default: "out") PalmOS name for prc file.

-cr <creator> (default: ????) 4 character creator for prc file.

-type <type> (default: appl) 4 character type for prc file.

-version <version> (default: 1) version number of prc file.

-zCrDate Set creation date to 0 (for testing).

-zModDate Set modification date to 0 (for testing).

-incBaseOverlay Include a base overlay resource on by default except with -overlayOf
option.

-incBaseOverlay- Don't include a base overlay resource.

prc flags:

Handspring Development Tool Guide

- 49 -

-backup Set backup bit in prc file.

-hidden Set hidden bit in prc file.

-readOnly Set readOnly bit in prc file.

-resetAfterInstall Set resetAfterInstall bit in prc file.

-copyPrevention Set copyPrevention bit in prc file.

Diagnostic options:

-v Verbose mode.
-ignoreDups Don't print warnings about duplicate resources.

Notes:
Resource Object (.ro) Files

When compiling resources, there are two options for output: a normal .prc file or "resource object" file. A
.prc file is complete and ready to be run on a device. A resource object file is an "incomplete prc," a resource
database which consists only of the resources defined in .rcp and .rsrc files. Resource object files are marked
by the extension ".ro" and have creator 'PlRC' and type 'reso'.

A resource object file is taken as input by the build-prc tool. If you want to take advantage of the multi-
segment support or other advantages of build-prc that aren't included in Palm-RC, you can use Palm-RC to
compile the resources and then use build-prc to add in the code resources and create the .prc file.

Palm-RC will automatically create a .ro file when it detects that there are no code resources being added.

Examples:
Creating Myapp.prc from linker output and resources:

Palm-RC -rcp ../Rsc/MyApp.rcp
-gccApp ../Obj/MyApp.code.1.sym
-I ../Src -I ../Rsc -o ../Obj/MyApp.prc
-name MyApp -cr MyAp

Creating Myapp.ro from a resource file:

Palm-RC -rcp ../Rsc/MyApp.rcp -o ../Obj/MyApp.ro
Creating a resource file from an existing .PRC:

Palm-RC -prc ../Obc/MyApp.prc
-oRcp MyApp.rcp

Patching an existing database:

Palm-RC -prc ../Obc/MyApp.prc
-patch code 0001 ../Src/Patches.txt
-o ../Obj/MyAppPatched.prc
-name MyApp -cr MyAp

Handspring Development Tool Guide

- 50 -

7.4 RCP file format
Syntax:

Items in ALL CAPS appear as literals in the file.
Items enclosed in < and > are required fields.
Items enclosed in [and] are optional fields.

Each field's required type is indicated by a suffix after the field name (see below for types).

Types:
.i = identifier

example: kFoo
.s or .ss = string (may contain the following character escapes: \t (tab) \n (cr)

or \nnn where nnn is an octal character code, or \xXX where XX is a
hex character code)

example: "Click Me\t\015\x0A"
may be a multi line string. Palm-RC will concatenate strings on seperate

lines
enclosed with quotes and terminated by the \ character
example: "Now is the time for all good "\

"men to come to the aid of their country"
no difference between .s and .ss (used to differentiate single-line from

multiline)

.n = number, defined constant or simple arithmetic expression. Valid operators
are + - * /.

precedence is left to right. math is integer.
examples: 23 12+3+1 12*4 14*3+5/2

.p = position coordinate. Which may be either a number, expression or one
of the following keywords

AUTO : Automatic width or height. The width/height of the
item is computed based on the text in the item.

valid only for widths or heights of items.
CENTER : Centers the item either horizontally or vertically.

Only valid for left or top coordinate of an item.
PREVLEFT : Previous items left coordinate
PREVRIGHT : Previous items right coordinate
PREVWIDTH : Previous items width
PREVTOP : Previous items top coordinate
PREVBOTTOM : Previous items bottom coordinate
PREVHEIGHT : Previous items height

Example: PREVRIGHT+2

 NOTE: AUTO and CENTER must stand alone and are not valid in arithmetic expressions

Comments:
Comments are single line and begin with //.

Note that they are only allowed at the outer scope. Comments within a FORM or MENU or other
command are treated as errors.

Quoting:
Strings enclosed in single quotes are quoted exactly--backslashes are treated as backslashes, not as
quoting characters.

Example: "hello\tthere" contains a tab, but 'hello\tthere' doesn't.

Handspring Development Tool Guide

- 51 -

7.4.1 Include Files
The .rcp file may contain #include directives. This allows a programmer to have one header file for the
project containing resource IDs. Source code can reference the symbols as can Palm-RC.

Palm-RC understands two include file formats. Following is the fairly limited syntax for each of them:

.h #define <Symbol.i> <Value.n>

.inc <Symbol.i> equ <Value.n>

Each symbol may then be used in place of any number.
Note: #ifdefs are ignored by Palm-RC.

7.5 Resource Language Reference
The .rcp file may contain the following commands:

FORM PalmOS Form
MENU Menu bar
ALERT Alert dialog box
VERSION Version string
STRING String
STRINGTABLE String table
APPINFOSTRINGS Category name strings
APPLICATIONICONNAME Application Icon's Name
APPDEFAULTCATEGORY Application Default Category
APPLICATION Application four character type
ICON Icon bitmap
BITMAP Bitmap
BOOTBITMAP Boot Bitmap
TRANSLATION Language string translation
DATA Include raw data from a file as a resource
HEX Defined resource as hex data

Handspring Development Tool Guide

- 52 -

FORM (tFRM)
FORM ID <FormResourceId.n> AT (<Left.p> <Top.p> <Width.p> <Height.p>)
[FRAME]
[NOFRAME]
[MODAL]
[SAVEBEHIND]
[USABLE]
[HELPID <HelpId.n>]
[DEFAULTBTNID <BtnId.n>]
[MENUID <MenuId.n>]
BEGIN

<OBJECTS>
END
<OBJECTS>: one or more of:

TITLE <Title.s>

BUTTON {<Label.s> | GRAPHIC <Id.n>} ID <Id.n> AT (<Left.p>
<Top.p> <Width.p> <Height.p>) [USABLE] [NONUSABLE]
[DISABLED] [LEFTANCHOR] [RIGHTANCHOR] [FRAME]
[NOFRAME] [BOLDFRAME] [FONT <FontId.n>]

PUSHBUTTON {<Label.s> | GRAPHIC <Id.n>} ID <Id.n> AT (<Left.p>
<Top.p> <Width.p> <Height.p>) [USABLE] [NONUSABLE]
[DISABLED] [LEFTANCHOR] [RIGHTANCHOR] [FONT <FontId>]
[GROUP <GroupId.n>]

CHECKBOX <Label.s> ID <Id.n> AT (<Left.p> <Top.p> <Width.p>
<Height.p>) [USABLE] [NONUSABLE] [DISABLED]
[LEFTANCHOR] [RIGHTANCHOR] [FONT <FontId>] [GROUP
<GroupId.n>] [CHECKED]

POPUPTRIGGER <Label.s> ID <Id.n> AT (<Left.p> <Top.p> <Width.p>
<Height.p>) [USABLE] [NONUSABLE] [DISABLED]
[LEFTANCHOR] [RIGHTANCHOR] [FONT <FontId.n>]

SELECTORTRIGGER <Label.s> ID <Id.n> AT (<Left.p> <Top.p> <Width.p>
<Height.p>) [USABLE] [NONUSABLE] [DISABLED]
[LEFTANCHOR] [RIGHTANCHOR] [FONT <FontId.n>]

REPEATBUTTON <Label.s> ID <Id.n> AT (<Left.p> <Top.p> <Width.p>
<Height.p>) [USABLE] [NONUSABLE] [DISABLED]
[LEFTANCHOR] [RIGHTANCHOR] [FRAME] [NOFRAME]
[BOLDFRAME] [FONT <FontId.n>]

SCROLLBAR ID <Id.n> AT (<Left.p> <Top.p> <Width.p> <Height.p>)
[USABLE] [NONUSABLE] [VALUE <Value.n>] [MINVALUE
<Min.n>] [MAXVALUE <Max.n>] [PAGESIZE <PageSize.n>]

LABEL <Label.s> ID <Id.n> AT (<Left.p> <Top.p>)[USABLE]
[NONUSABLE] [FONT <FontId.n>]

FIELD ID <Id.n> AT (<Left.p> <Top.p> <Width.p>
<Height.p>)[USABLE] [NONUSABLE] [DISABLED] [LEFTALIGN]
[RIGHTALIGN] [FONT <FontId.n>] [EDITABLE]
[NONEDITABLE] [UNDERLINED] [SINGLELINE]
[MULTIPLELINES] [MAXCHARS <MaxChars.n>] [AUTOSHIFT]
[HASSCROLLBAR] [NUMERIC]

POPUPLIST ID <Id.n> <IdList.n>

Handspring Development Tool Guide

- 53 -

LIST <Item.s> <Item2.s>... ID <Id.n> AT (<Left.p> <Top.p>
<Width.p> <Height.p>) [USABLE] [NONUSABLE] [DISABLED]
[VISIBLEITEMS <NumVisItems.n>] [FONT <FontId.n>]

FORMBITMAP AT (<Left.p> <Top.p>) BITMAP <BitmapId.n> [NONUSABLE]

GADGET ID <Id.n> AT (<Left.p> <Top.p> <Width.p> <Height.p>)
[USABLE] [NONUSABE]

TABLE ID <Id.n> AT (<Left.p> <Top.p> <Width.p> <Height.p>)
ROWS <NumRows.n> COLUMNS <NumCols.n> COLUMNWIDTHS
<Col1Width.n> <Col2Width.n.>...

GRAFFITISTATEINDICATOR AT (<Left.p> <Top.p>)

Notes: The bitmap referenced by FORMBITMAP must appear as a seperate
resource in the rcp file via the BITMAP command.

MAXCHARS is required for FIELD to work properly.

Example:
FORM ID 1 AT (2 2 156 156)
USABLE
MODAL
HELPID 1
MENUID 1
BEGIN
TITLE "AlarmHack"
LABEL "Repeat Datebook alarm sound" ID 2000) AT (CENTER 16)
PUSHBUTTON "1" ID 2001 AT (20 PrevBottom+2 12) AUTO GROUP 1
PUSHBUTTON "2" ID 2002 AT (PrevRight+1 PrevTop PrevWidth PrevHeight) GROUP 1
PUSHBUTTON "3" ID 2003 AT (PrevRight+1 PrevTop PrevWidth PrevHeight) GROUP 1
PUSHBUTTON GRAPHIC 1000 ID 2004 AT (PrevRight+1 PrevTop PrevWidth PrevHeight)

GROUP 1

LABEL "times. Ring again every" ID 601 AT(CENTER PrevBottom+2) FONT 0

PUSHBUTTON "never" ID 3000 AT (13 PrevBottom+2 32 12) GROUP 2
PUSHBUTTON "10 sec" ID 3001 AT (PrevRight+1 PrevTop PrevWidth PrevHeight) GROUP 2
PUSHBUTTON "30 sec" ID 3002 AT (PrevRight+1 PrevTop PrevWidth PrevHeight) GROUP 2
PUSHBUTTON "1 min" ID 3003 AT (PrevRight+1 PrevTop PrevWidth PrevHeight) GROUP 2

LABEL "Alarm sound:" ID 601 AT (24 PrevBottom+4)
POPUPTRIGGER " " ID 5000 AT (PrevRight+4 PrevTop 62 AUTO) LEFTANCHOR
LIST "Standard" "Skip Along" "Beethoven" "EuroCop" "Cricket" "Bleep" "Computer2"

ID 6000 AT (PrevLeft PrevTop 52 1) VISIBLEITEMS 10 NONUSABLE
POPUPLIST ID 5000 6000

BUTTON "Test" ID 1202 AT (CENTER 138 AUTO AUTO)
GRAFFITISTATEINDICATOR AT (100 100)

END
BITMAP ID 1000 "PushButton.1.bmp"

Handspring Development Tool Guide

- 54 -

MENU (MBAR)
MENU ID <MenuResourceId>
BEGIN

<PULLDOWNS>
END

<PULLDOWNS>: one or more of:

PULLDOWN <PulldownTitle.s>
BEGIN

<MENUITEMS>
END

<MENUITEMS>: one or more of:
MENUITEM [HIDDEN] <MenuItem.s> <MenuItemId.n> [AccelChar.c]

Example:
MENU ID 100
BEGIN

PULLDOWN "File"
BEGIN

MENUITEM "Open..." ID 100 "O"
MENUITEM "Close" ID 101 "C"

END
PULLDOWN "Options"
BEGIN

MENUITEM "Get Info..." ID 500 "I"
END

END

ALERT (tALT)
ALERT ID <AlertResrouceId.n>
[HELPID <HelpId.n>]
[INFORMATION] [CONFIRMATION] [WARNING] [ERROR]
BEGIN

TITLE <Title.s>
MESSAGE <Message.ss>
BUTTONS <Button.s> <BUTTON.s>...

END

Example:
ALERT ID 1000
HELPID 100
CONFIRMATION
BEGIN

TITLE "AlarmHack"
MESSAGE "Continuing will cause you 7 years of bad luck\n"\

"Are you sure?"
BUTTONS "Ok" "Cancel"

END

Handspring Development Tool Guide

- 55 -

VERSION (tver)
VERSION ID <VersionResourceId.n> <Version.s>

Example:
VERSION ID 1 "0.09"

STRING (tSTR)
STRING ID <StringResourceId.n> <String.ss>

Example:
STRING ID 100 "This is a very long string that demonstrates carriage returns\n" \

"as well as continued .ss syntax strings"

STRINGTABLE (tSTL)
STRINGTABLE ID <StringTableResourceId.n> <PrefixString.ss> <String.ss> ...
<String.ss>

STRINGTABLE is intended for null-terminated strings. The terminators do not need to be explicitly
added (see Examples below). If null characters are embedded into a string, only the portion of the string
up to the first null character will be placed in the resource; a warning will also be issued.

To omit the PrefixString, start the STRINGTABLE with an empty set of quotes.

Example (with prefix):
STRINGTABLE ID 1000 "Directions" "North" "South" "East" "West"

Example (without prefix):
STRINGTABLE ID 1000 "" "foo" "bar" "baz"

Example (without prefix, vertical style):
STRINGTABLE ID 1000 ""

"foo"
"bar"
"baz"
"con" \
"catenated"

Handspring Development Tool Guide

- 56 -

APPINFOSTRINGS (tAIS)
The first 16 of these are used for localized category names. After that, it's up to the application developer.
Currently, palm-rc enforces that there must be at least 16 of these (because the system requires it for
categories)

APPINFOSTRINGS ID <AppInfoStringResourceId.n>
<Category.s>
<Category.s>
...

Example:
APPINFOSTRINGS ID 1000

"Unfiled"
"System"
"Games"
"Utilities"
"Main"
""
""
""
""
""
""
""
""
""
""
""

APPLICATIONICONNAME (tAIN)
APPLICATIONICONNAME ID <AINResourceId.n> <ApplicationName.s>

Example:
APPLICATIONICONNAME ID 100 "AlarmHack"

APPDEFAULTCATEGORY (taic)
APPDEFAULTCATEGORY <ApplicationCategory.s>

On OS 3.5 and up, this will let the app developer specify which category the application should show up in when
installed. This should be used with care, as the user expects that applications show up in "Unfiled". If you are
specifying one of the built-in categories, you should specify the category in English EVEN IN
LOCALIZED VERSIONS. The launcher knows how to do the translation.

On pre-Palm OS 3.5 systems, the resource generated by this command is ignored.

Example:

APPDEFAULTCATEGORY "Games"

Handspring Development Tool Guide

- 57 -

APPLICATION (APPL)
APPLICATION ID <ApplResourceId.n> <APPL.s>
<APPL.s> must be 4 characters long

Example:
APPLICATION ID 1 "ALHK"

ICON (tAIB)
Converts a Microsoft Windows-style bitmap(s) to tAIB Palm OS icon resources with ID 1000. If one or
more DEPTHx is specified, then the icon resource will include the other specified bit depths in addition to
the 1-bit deep version. The source bitmap files can be in 1, 2, 4, 8, or 24 bits per pixel format and Palm-
RC will do the necessary bit-depth conversion.

If the TRANSPARENT keyword is present, then the bitmap will be created such that any pixels matching
the given color will be transparent. The transparency applies to all bitmaps in the family (except 1-bit). In
schemes with a color table (2, 4, and 8 bit depth), the index that will be made transparent is the one that
matches the color specified most closely. NOTE: 2-bit images will change from version 1 format to
version 2 format if you specify transparency.

IMPORTANT: Bit depths greater than 2 bits per pixel are only supported in Palm OS 3.5 or
greater and DEPTH16 is only supported on the Handspring platform.

ICON <IconFileName.s>
[DEPTH2 <IconFileName2.s>]
[DEPTH4 <IconFileName4.s>]
[DEPTH8 <IconFileName8.s>]
[DEPTH16 <IconFileName16.s>]
[TRANSPARENT <red.n> <green.n> <blue.n>]

Example:
ICON "myicon.bmp" DEPTH2 "myicon.2.bmp" TRANSPARENT 0 255 0

SMICON (tAIB)
Converts a Microsoft Windows-style bitmap(s) to tAIB Palm OS icon resources with ID 1001. If one or
more DEPTHx is specified, then the icon resource will include the other specified bit depths in addition to
the 1-bit deep version. The source bitmap files can be in 1, 2, 4, 8, or 24 bits per pixel format and Palm-
RC will do the necessary bit-depth conversion.

If the TRANSPARENT keyword is present, then the bitmap will be created such that any pixels matching
the given color will be transparent. The transparency applies to all bitmaps in the family (except 1-bit). In
schemes with a color table (2, 4, and 8 bit depth), the index that will be made transparent is the one that
matches the color specified most closely. Note: 2-bit images will change from version 1 format to version
2 format if you specify transparency.

IMPORTANT: Bit depths greater than 2 bits per pixel are only supported in Palm OS 3.5 or
greater and DEPTH16 is only supported on the Handspring platform.

SMICON <IconFileName.s>
[DEPTH2 <IconFileName2.s>]
[DEPTH4 <IconFileName4.s>]
[DEPTH8 <IconFileName8.s>]
[DEPTH16 <IconFileName16.s>]
[TRANSPARENT <red.n> <green.n> <blue.n>]

Example:
SMICON "mysmicon.bmp" TRANSPARENT 0 255 0

Handspring Development Tool Guide

- 58 -

BITMAP (Tbmp), BOOTBITMAP (Tbsb)

Converts Microsoft Windows-style bitmap to TBmp Palm OS bitmap resources. If one or more DEPTHx
is specified, then the icon resource will include the other specified bit depths in addition to the 1-bit deep
version. The source bitmap files can be in 1, 2, 4, 8, or 24 bits per pixel format and Palm-RC will do the
necessary bit-depth conversion.

If the TRANSPARENT keyword is present, then the bitmap will be created such that any pixels matching
the given color will be transparent. The transparency applies to all bitmaps in the family (except 1-bit). In
schemes with a color table (2, 4, and 8 bit depth), the index that will be made transparent is the one that
matches the color specified most closely. NOTE: 2-bit images will change from version 1 format to
version 2 format if you specify transparency.

You may control the compression of bitmaps using NOCOMPRESSS, COMPRESS, or FORCECOMPRESS.
NOCOMPRESS means that the bitmap won't be compressed no matter what. COMPRESS (the default) will
compress the bitmap if the resulting bitmap is smaller. FORCECOMPRESS will always compress the
bitmap. 1-bit and 2-bit without transparency (aka version 1 bitmaps) will use scanline compression. 2-bit
with transparency and all 4-bit, 8-bit, and 16-bit bitmaps will use the smaller of scanline and RLE
compression. Using the optional depth specification, you can specify which depths a command applies to
(1, 2, 4, 8, 16, 24, 32). If no depth specification is present, the command will apply to all depths. Multiple
depth commands can be present and will be evaluated left to right.

If the INCLUDECLUT keyword is present, then the bitmap will include it's own color lookup table copied
from the original bitmap file.

IMPORTANT: Bit depths greater than 2 bits per pixel are only supported in PalmOS 3.5 or
greater and DEPTH16 is only supported on the Handspring platform.

BITMAP ID <BitmapResourceId.n> [INCLUDECLUT]

[<BitmapFileName.s>]
[DEPTH2 <BitmapFileName2.s>]
[DEPTH4 <BitmapFileName4.s>]
[DEPTH8 <BitmapFileName8.s>]
[DEPTH16 <BitmapFileName16.s>]
[TRANSPARENT <red.n> <green.n> <blue.n>]
[NOCOMPRESS [<depth.n>]* | COMPRESS [<depth.n>]* | FORCECOMPRESS

[<depth.n>]*]*

Example:
BITMAP ID 100 "mybitmap.bmp" DEPTH2 "mybitmap.2.bmp" TRANSPARENT 0 255 0
FORCECOMPRESS NOCOMPRESS 2

Handspring Development Tool Guide

- 59 -

DATA
Includes an entire file as a user-defined resource

DATA <ResType.s> ID <ResId.n> <FileName.s>

Example:
DATA "dflt" ID 1 "DefaultDataDB.bin"

HEX
Define a user-defined resource as hex and/or ascii data

HEX <ResType.s> ID <ResId.n> <Byte.n> | <String.s>...

Example:
HEX "junk" ID 1000

0x00 0x00 0x00 0x23 "String" 0x00 "String2"
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Handspring Development Tool Guide

- 60 -

7.6 International Support
Palm-RC supports a limited form of international tokenization. It works by substituting strings in the
resource definitions with replacements specified in a TRANSLATION section. Multiple translation blocks
may be specified in a resource script. The active language is specified with the -l flag to Palm-RC.

The biggest problem is with positioning of controls. If you use AUTO, CENTER, and PREVRIGHT, for
example, it might not involve any position changing in your script. If you do need to change the
position, right now the only workaround is to put some #ifdefs in your file and hook up a custom rule to
preprocess your source file. Another way to do internationalizaton is to have multiple resource files
compiled conditionally depending on the build target.

Note: The TRANSLATION section must appear first in the .rcp file, before any use of the strings to be
translated.

Example:
Palm-RC -l FRENCH myscript.rcp

TRANSLATION
TRANSLATION <Language.s>
BEGIN

<STRINGTRANSLATIONS>
END
Where <STRINGTRANSLATINOS> is one or more of:
<Original.s> = <Translated.ss>

Tip: For long strings, define a short keyword and then define both native and foreign translations for it.

Example:
TRANSLATION "FRENCH"
BEGIN

"Repeat Datebook alarm sound" = "Répétitions Alarme Agenda"
"Ring again every" = "Rappel tous les"

END

Handspring Development Tool Guide

- 61 -

7.7 Known Bugs
• LIST: DISABLED doesn't work. Seems to be a Palm OS bug.

• LIST: VISIBLEITEMS may be required for list objects to show properly.

• FIELD: MAXCHARS required for field control to accept characters to work.

• Comments are only allowed at the outermost scope level. Comments within FORM, MENU or other
commands are syntax errors.

Handspring Development Tool Guide

- 62 -

8 Palm Debugger User’s Guide

8.1 About PalmDebugger
PalmDebugger is a Windows and Macintosh desktop application for debugging Palm OS executables. It provides
assembly- and source-level debugging as well as support for managing databases on the Palm OS device. Palm
Debugger can communicate with a Palm OS device over serial or USB ports, or with the Palm OS Emulator
desktop application (which acts as a virtual Palm OS device) over TCP/IP.

All Palm OS devices have a debugger stub in their ROM with which PalmDebugger communicates. This
debugger stub, although fairly small, provides enough basic support for all of PalmDebugger's functions,
including the display and modification of memory, setting breakpoints, single-stepping, dumping memory heaps,
and modifying databases.

Besides basic debugging support of Palm OS executables, PalmDebugger also provides a Console window for
system administration functions. The Console window behaves like a Unix shell or DOS command line interface
to the device. Included are Console window commands for such tasks as getting a directory of databases on the
device, creating and deleting databases, importing and exporting databases to and from the desktop computer, and
many other system-level functions.

PalmDebugger is a developer's tool. It is very powerful but, unfortunately, is not a very "polished" application. In
it's design, user-friendliness has taken a back seat to power and functionality. But time spent learning how to use
it will be time well spent and it will pay for itself many times over. With the help of this document, you should be
able to learn the basics of how using Palm Debugger within an hour or so.

Handspring Development Tool Guide

- 63 -

8.2 User Interface Overview

8.2.1 The Windows
When launched, PalmDebugger displays four windows:

• Debugger window: The Debugger window is used for assembly-level debugging.

• Console window: The Console window is used as a command-line based shell for managing databases on
the device.

• CPU Registers window: The CPU Registers window is used for assembly-level debugging.

• Source window: The Source window is used for source-level debugging. Note that the Source window
and source-level debugging support is only present in the Windows version.

Most of the powerful functions of the debugger are accessed by typing commands either into the Debugger or
Console windows. There are, however some menus for performing basic source-level debugging functions such as
setting breakpoints or single-stepping. The Source window is essentially an "output-only" window that is used to
display the source code and local variables for the executable currently being debugged. The CPU Registers
window is also an output-only window that displays the values of each of the CPU registers while debugging.

Commands are entered into the Debugger and Console windows by typing the command, then hitting the [Enter]
key (Note: on the Macintosh, use the [Enter] key on the numeric keyboard or [Cmd-Return]). Both the Debugger
and Console windows have a 'help' command that displays a list of possible commands. Help on any specific
command can be displayed by entering ‘help cmdName.’

The Debugger and Console windows behave like edit windows. They support cut, copy, paste, and undo (undo is
available in the Windows version only). Whenever you hit the Enter key, the window executes whatever text is
currently selected, or the entire current line if the selection is empty. If more than one line is selected, every
selected line will be executed. If you simply want to create a new line without executing the current line, hit the
[Return] (on a Macintosh), or [Shift-Enter] (on Windows).

The Windows version also supports the following special key sequences: [Shift-Backspace] will delete all text from
the current selection point to the end, and the undo command [Ctrl-Z] entered immediately after executing a
command will delete the output of the command from the window.

8.2.2 The Menus
Most of the menu items in the File menu are not yet implemented. In the future, this menu will allow saving and
printing of window contents.

The Edit menu provides the usual cut, copy, paste functions as well as undo and redo and a font command for
changing the font used in all of the windows.

The Connection menu is used to set up communications with the actual or virtual (in the case of
PalmOSEmulator) device. The choices are through:

• One of the serial ports (COM1 through COM4 on Windows, Modem or Printer on Macintosh)

• USB (Windows 98 and Windows 2000)

• Emulator (to communicate with the PalmOSEmulator application running on the desktop)

When one of the serial ports is selected, the menu items for changing the baud rate are enabled.

The Source menu provides basic source-level debugging commands, such as breakpoints, single stepping, or
continuing, as well as commands for setting up the symbol files for source-level debugging.

The Window menu (Windows version only) provides the standard Windows commands for selecting various
windows and rearranging them.

Handspring Development Tool Guide

- 64 -

8.3 The Console Window
The Console window behaves like a Unix shell or DOS command line interface to the device. Through the
Console window, you get a directory of databases on the device, create and delete databases, transfer databases to
and from the desktop, and display system information.

In order to use the Console window to communicate with the device, the device must be running a "console
stub". The console stub runs as a background thread on the device and waits for commands over the serial or USB
port, processes the commands, then sends back responses. Because the console stub runs as a background thread,
it does not affect the normal operation of the device, and applications can be used normally while the thread is
running. However, because it requires memory and system resources, it is not normally started unless specifically
activated by the user. Once started, the console stub continues to run, and prevents other applications (like
HotSync) from using the serial port until the device is soft-reset.

To activate the console stub on a device, enter the Graffiti sequence Shortcut-.-2, i.e., a shortcut stroke (a script
lower case letter 'L'), followed by a period (two single taps), followed by the number 2 (entered in the right side of
the Graffiti area). When the console stub first starts, it sends out a "Ready..." message. If you have PalmDebugger
running and connected with a cable to the device, this message will show up in the Console window of
PalmDebugger. If the console stub was already started or if PalmDebugger was not connected to the device, you
will not see the message. Note that if you are debugging using the PalmOSEmulator instead of a real device, you
do not need to manually start the console stub because it will be started for you automatically.

Be sure to double-check the communications method used in the Connection menu. If debugging with a
Handspring device, the default method should be set to "USB". All other Palm devices use serial at 57,600 baud.
If desired, you can debug a Handspring device using serial instead of USB by pressing the "up" key on the device
when starting the console stub (hold down the [Up] key as you type the Graffiti shortcut sequence).

Once the console stub is running on the device, you should be able to successfully enter commands in the Console
window of PalmDebugger and see results back from the device. A simple, quick command to try is "hl 0". This
displays a list of memory heaps on card #0 of the device. Here's an example output from the hl command:

hl 0
index heapID heapPtr size free maxFree flags

--
0 0000 00001480 00016B80 00010A90 0001046C 8000
1 0001 1001810E 001E7EF2 001E53C0 001E5342 8000
2 0002 10C08212 00118DEE 0000A01C 0000A014 8001

If the console stub is not running on the device, or if the serial or USB connection is not correct, you will see the
following error message after a few seconds:

Error $00000404 occurred

If you see this message, double-check that you have the correct communication options set in the Connection
menu of PalmDebugger. If you are using a serial connection, make sure PalmDebugger is set to 57,600 baud,
check that you have the correct handshaking mode, check your cable connection, and make sure that the device is
powered on, and that you have started the console stub as described above.

8.3.1 Commonly used Console Commands
import
By far, the most commonly-used console command is the import command. This command copies a Palm OS
database from the desktop to the device. It is used whenever you have built a new version of an application and
want to load the application onto the device for testing. It basically performs the same function as the Installer
tool provided with the HotSync application, but is much more convenient to use than the Installer tool when
debugging.

Handspring Development Tool Guide

- 65 -

The basic form of the import command is:

import <cardNo> <filename>

Where <filename> is the name of a file on the desktop. By default, PalmDebugger looks in the Device sub-
directory within the PalmDebugger application directory for the named file. The filename can also be specified
using a relative or absolute path if it's not in the Device directory. The <cardNo> is nearly always 0, which means
import the database into the built-in RAM on the device.

Here's an example of the import command and its output:
import 0 Tex2HexApp.prc

Creating Database on card 0
name: Text to Hex
type appl, creator TxHx

Importing resource 'code'=0....
Importing resource 'data'=0....
Importing resource 'pref'=0....
Importing resource 'rloc'=0....
Importing resource 'code'=1....
Importing resource 'tFRM'=1000....
Importing resource 'tver'=1....
Importing resource 'tAIB'=1000....
Importing resource 'Tbmp'=1000....
Importing resource 'Tbmp'=1001....
Importing resource 'MBAR'=1000....
Importing resource 'Talt'=1000....
Importing resource 'Talt'=1001....
Success!!

Note that after the database is stored on the device, its name is not the same as the name of the file on the
desktop. The Palm OS database name is stored within the file itself, was "Text to Hex" in the example shown
above.

If the file you're trying to import already exists on the device, it will be deleted and replaced by the new file unless
the current database is open on the device. If it is open when you try to import a new copy, you will get a
dmErrAlreadyExists (0x0219) Data Manager error code back from the import command. For example:

import 0 Tex2HexApp.prc

Creating Database on card 0
name: Text to Hex
type appl, creator TxHx

Error $00000219 occurred

Unfortunately, most of the error messages you see in PalmDebugger are fairly cryptic hex codes such as the one
above. To determine the meaning of the error message, you will have to look up the name of the error code from
the Palm OS header files. All Palm OS error codes are 16-bit values with the upper byte representing the manager
and the lower byte representing a manager-specific error code. In the example above, the manager code was 0x02
and the specific error code was 0x19. The <SystemMgr.h> header file contains the manager codes (0x02 is

dmErrorClass) and the manager-specific error code can be found in that manager's header file (0x19, decimal

25, is dmErrAlreadyExists in <DataMgr.h>).

Handspring Development Tool Guide

- 66 -

export
The export command does the opposite of the import command above. It copies a database from the device to the
desktop.

The basic form of the export command is:

export <cardNo> <filename>

Where <filename> is the name of the Palm OS database. To get a list of databases on the device to determine their
names, use the dir command described below. The database will be copied to the desktop in the standard .prc/.pdb
file format (these two formats are actually identical; prc is normally used to indicate resource databases and .pdb is
normally used to represent record databases) and will be given a name of <filename> without any added extension.
All exported files are placed into the Device sub-directory of PalmDebugger.

Here's an example of the export command and its output. Note that you must use quotes if there are spaces in the
name:

export 0 "Text to Hex"

Exporting resource 'code'=0....
Exporting resource 'data'=0....
Exporting resource 'pref'=0....
Exporting resource 'rloc'=0....
Exporting resource 'code'=1....
Exporting resource 'tFRM'=1000....
Exporting resource 'tver'=1....
Exporting resource 'tAIB'=1000....
Exporting resource 'Tbmp'=1000....
Exporting resource 'Tbmp'=1001....
Exporting resource 'MBAR'=1000....
Exporting resource 'Talt'=1000....
Exporting resource 'Talt'=1001....
Success!!

The above command will create a file called Text to Hex within the Device sub-directory of PalmDebugger.

dir
The dir command will display a list of databases on the device. The basic form of this command is:

dir <cardNo>|<searchOptions> [<displayOptions>...]

The <displayOptions> are usually left blank, or the -a option is specified, which means to display all information.
For a complete list of options, type 'help dir' in the Console window.

Here's an example of the command and its (abbreviated) output:
dir 0
name ID total data
--
*System 00D20A44 392.691 Kb 390.361 Kb
*AMX 00D209C4 20.275 Kb 20.123 Kb
*UIAppShell 00D20944 1.327 Kb 1.175 Kb
*PADHTAL Library 00D208E2 7.772 Kb 7.674 Kb
*IrDA Library 00D20876 39.518 Kb 39.402 Kb
...
MailDB 0001817F 1.033 Kb 0.929 Kb
NetworkDB 0001818B 0.986 Kb 0.722 Kb
System MIDI Sounds 000181B3 1.066 Kb 0.842 Kb
DatebookDB 000181FB 0.084 Kb 0.000 Kb

--
Total: 41

del

Handspring Development Tool Guide

- 67 -

The del command will delete a database from the device. The basic form of this command is:

del <cardNo> <filename>

Where <filename> is the name of the Palm OS database. To get a list of databases on the device to determine their
names, use the dir command described above. Keep in mind that you won't be able to delete a database if it is
currently open. If you get an error from this command, such as "##ERROR Deleting database", the most likely
reason is that the database is currently open. If this is an application that is currently running, switch to a different
application and try again.

8.3.2 Less Commonly-used Console Commands
Entering help in the Console window will display a relatively large list of available console commands. The
commands mentioned above will be used most of the time. The remaining console commands are used much less
often, and most users will probably never use most of them.

Rather than describe all of the console commands in detail, we will just provide a brief overview of those most
likely to be used. Later in this document, we describe how to track down and solve typical application problems,
and we will describe specific features of the console commands that are useful for tracking down specific
problems.

Of the remaining console commands, those dealing with memory heaps are probably used most frequently. These
include the following:

hl <cardNo> Display list of memory heaps

hd <hex heapID> Dump a specific heap

The hl command displays a list of memory heaps. For example:
hl 0

index heapID heapPtr size free maxFree flags
--

0 0000 00001480 00016B80 00010A90 0001046C 8000
1 0001 1001810E 001E7EF2 001E53C0 001E5342 8000
2 0002 10C08212 00118DEE 0000A01C 0000A014 8001

The hd command does a dump of a specific heap. The <heapID> argument can be determined by looking at the
"heapID" column of the h' command. Heap number 0 is always the dynamic heap and higher number heaps
represent storage RAM or ROM. For example:
hd 0
Displaying Heap ID: 0000, mapped to 00001480

req act resType/ #resID/
start handle localID size size lck own flags type index attr ctg uniqueID name
--
-00001534 00001490 F0001491 00001E 000026 #0 #0 fM Alarm Table
-0000155A 00001494 F0001495 000456 00045E #0 #0 fM Graffiti Private
-000019B8 00001498 F0001499 000012 00001A #0 #0 fM DataMgr Protect List (DmProtectEntryPtr*)
...
-00017DC6 -------- F0017DC6 0001F4 0001FC #0 #15 fM Handle Table: 'Graffiti ShortCuts'
-00017FC2 -------- F0017FC2 000024 00002C #0 #15 fM DmOpenInfoPtr: 'Graffiti ShortCuts'
-00017FEE -------- F0017FEE 00000E 000016 #0 #15 fM DmOpenRef: 'Graffiti ShortCuts'
--
Heap Summary:
flags: 8000
size: 016B80
numHandles: #40
Free Chunks: #14 (010A90 bytes)
Movable Chunks: #52 (006040 bytes)
Non-Movable Chunks: #0 (000000 bytes)

The kinfo command displays a list of all system kernel information such as tasks, semaphores, and event groups.

Handspring Development Tool Guide

- 68 -

kinfo <options>

-all : get all info

-task <id>|all : get task info

-sem <id>|all : get semaphore info

-tmr <id>|all : get timer info

Display system kernel info

For example:
kinfo -all

Task Information:
taskID tag priority stackPtr status

0001772C AMX # 0 00017598 Idle: Waiting for Trigger
00017900 psys # 30 000130B4 Running

Semaphore Information:
semID tag type initValue curValue nesting ownerID

00017830 MemM resource #-1 #1 (free) #0 00000000
00017864 SlkM counting #1 #1 (avail.) #0 00000000
000178CC SndM counting #1 #1 (avail.) #0 00000000
00017968 Sync resource #-1 #1 (free) #0 00000000
00017A38 SerM counting #0 #0 (unavail.) #0 00000000

Timer Information:
tmrID tag ticksLeft period procPtr

000177FC psys # 493 # 0 10C6C618

Finally, the mdebug command puts the device into various modes for helping to track down memory corruption
problems. Note that turning these options on slows down the device, (often considerably):

mdebug [options..]
Shortcuts:

-full : Full checking (slowest)
-partial : Partial checking (faster)
-off : No checking (fastest)

Fine Tuning:
Which heaps are checked/scrambled:

-a : check/scramble ALL heaps each time
-a- : check/scramble affected heap only

Heap Checking:
-c : check heap(s) on some Mem calls
-ca : check heap(s) on every Mem call
-c- : turn off heap checking

Heap Scrambling:
-s : scramble heap(s) on some Mem calls
-sa : scramble heap(s) every Mem call
-s- : turn off heap scramble

Free Chunk Checking:
-f : check free chunk contents
-f- : don't check free chunk contents

Min Dynamic Heap free space recording:
(Recorded in the global GMemMinDynHeapFree)

-min : record minimum free space in Dynamic heap
-min- : don't record minimum free space

Turn on/off various memory
debugging options

Handspring Development Tool Guide

- 69 -

8.4 The Debugger Window
The Debugger window is used in conjunction with the CPU Registers window for assembly-level debugging.
Commands are entered into this window for displaying and modifying memory, single stepping, setting and
clearing breakpoints, dumping memory heaps, displaying database directories, automatically breaking on one or
more Palm OS system calls, breaking when a memory location is modified, etc. Besides applications, this window
can also debug system code, extensions, shared libraries, background threads and interrupt handlers.

The Debugger window also supports custom-defined command aliases, script files, and data structure templates,
as described in more detail in the Utility Commands section below. You can automatically load these custom
definitions every time you launch PalmDebugger by adding them to the UserStartup-PalmDebugger text file,
which is executed by PalmDebugger every time it starts up.

8.4.1 Attaching to the Device
Most Debugger window commands (except for help and some utility commands) only execute when the device is
connected to the desktop and halted in its debugger stub. When the device is halted in the debugger stub, it will
not respond to pen taps on the screen or key presses and you will see a tiny flashing square about 4 pixels across in
the upper left corner of the display (Note: Color device screens will invert and there will not be any flashing
cursor). There are two main ways to put the device into this mode (besides encountering a bug of course!):

1. Enter the Shortcut-.-1 sequence using Graffiti.

2. Compile a DbgBreak() call into your application and run the application until you encounter the
DbgBreak() call.

To use method #1 above, enter the Graffiti sequence Shortcut-1, i.e., a shortcut stroke (a script lower case
letter 'L'), followed by a period (two single taps), followed by the number 1 (entered in the right side of the
Graffiti area).

To use method #2 above, you must have previously entered the debugger at least once using method #1. If the
debugger has not been entered at least once already using method #1, then, instead of entering the debugger, the
DbgBreak() call will display a fatal error dialog. Alternately, you can set the low memory global
GDbgWasEntered to non-zero before the DbgBreak() call. This will effectively make the device "think" it
has entered the debugger already. For example:

GDbgWasEntered = true;
DbgBreak();

If the PalmDebugger application is running and connected with the appropriate cable to the device when it halts
into the debugger, you will see a message similar to the following appear in the Debugger window:

EXCEPTION ID = $A0
'PrvHandleEvent'
+$062C 10C0F2AA *MOVEQ.L #$01,D0 | 7001

Be sure to set the communications method correctly in the Connection menu of PalmDebugger. If debugging
with the PalmOSEmulator, it should be set to Emulator. If debugging a Handspring device, it should be set to
USB. All other Palm devices use serial connections at 57,600 baud. If desired, you can debug a Handspring device
using serial by pressing the [Up] key when entering the debugger for the first time (i.e., hold down the [Up] key
while entering the Graffiti shortcut sequence). If using serial, check that you have a serial cable with handshaking
lines. If you don't, turn off the Handshaking option in the Connection menu.

Handspring Development Tool Guide

- 70 -

If the PalmDebugger was not running or connected correctly to the device when it halted, you can use the att
command to attach PalmDebugger to the device. For example:

att
EXCEPTION ID = $A0
+$062C 10C0F2AA *MOVEQ.L #$01,D0 | 7001

The att command sends a request packet to the device and waits for a response from the device saying where it is
currently halted. If no response is received within a couple of seconds, the att command will timeout and display
a timeout error message. This means either that the device is not halted in the debugger or that there is a problem
with the connection between desktop and the device.

If you try to execute a debugger command when the PalmDebugger thinks it is not attached to the device, it will
display an error message "Error: not attached to remote". If this happens, ensure that the device is
halted in the debugger, then issue the att command to re-attach PalmDebugger to the device.

8.4.2 Commonly-Used Debugger Commands
This section illustrates the most commonly-used debugger commands. It does not cover the entire set of available
commands or options, however. To see the entire set of available commands enter the help command in the
Debugger window. To get help on a particular command, enter help cmdName.

8.4.2.1 Entering Commands
As mentioned previously, debugger commands are typed into the Debugger window and executed by hitting the
Enter key. For commands that take arguments, such as an address on which to operate, the arguments can be
entered in either decimal or hex or as expressions. In addition, expressions can be written in terms of processor
registers. By default, all numbers are assumed to be in hex unless preceded by a '#' sign (decimal) or '%' sign
(binary).

A number of commands allow you to intelligently repeat the command simply by pressing [Enter] repeatedly. The
'dm' command is one of these commands - every time you hit [Enter] it displays the next 16 bytes of data. The 's'
and 't' commands for single stepping also repeat when you hit Enter.

One shortcut character is introduced below: the '.' character. This is a shorthand representation for the address
value used for the last command. For a full description of expression evaluation and all the shorthand characters
that are available, see the Debugger Expressions section below.

The following is an example that shows how to display and disassemble memory using various expressions. In all
the examples in this section, commands entered by the user are shown in bold and comments are show in italics:

dm 0 <=Display memory at address 0
00000000: FF FF FF FF 1A 34 3E 40 10 C0 92 D4 10 C0 92 F2 ".....4>@........"

dm 100 <=Display memory at address 0x100
00000100: 01 01 00 00 02 B0 00 01 78 30 00 00 00 01 47 EE "........x0....G."

dm #100 <=Display memory at address 100 decimal
00000064: 10 C6 BE 32 10 C6 BE 60 10 C6 BE 8E 10 C6 BE BC "...2...`........"

dm 100+20 <=Shows how to enter an expression for an address
00000120: 6F BC 00 00 07 22 00 00 00 06 00 01 7D 72 00 FD "o...."......}r.."

dm .+10 <=Illustrates using the '.' character to represent
the last address entered.

00000130: 00 00 00 00 00 00 00 B6 3E C0 69 45 A4 0C 03 4A "........>.iE...J"

dm pc <=Use the current program counter value
10C0EEFE: 70 01 60 00 01 7E 4E 4F A0 BE 70 01 60 00 01 74 "p.`..~NO..p.`..t"

dm pc+20 <=An expression using the program counter
10C0EF1E: FF F4 4E 4F A0 AC 38 00 4A 44 50 4F 66 2A 48 6E "..NO..8.JDPOf*Hn"

Handspring Development Tool Guide

- 71 -

il pc <=Disassemble code at current program counter
'SysHandleEvent 10C0E9EC'
+$0512 10C0EEFE *MOVEQ.L #$01,D0 | 7001
+$0514 10C0EF00 BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 017E
+$0518 10C0EF04 _SysLaunchConsole ; $10C0E30C | 4E4F A0BE
+$051C 10C0EF08 MOVEQ.L #$01,D0 | 7001
+$051E 10C0EF0A BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 0174
+$0522 10C0EF0E MOVEQ.L #$00,D0 | 7000
+$0524 10C0EF10 BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 016E
+$0528 10C0EF14 CLR.L -$0010(A6) | 42AE FFF0
+$052C 10C0EF18 PEA -$0006(A6) | 486E FFFA
+$0530 10C0EF1C PEA -$000C(A6) | 486E FFF4

il pc-10 <=Display code at program counter - 0x10
'SysHandleEvent 10C0E9EC'
+$0502 10C0EEEE ORI.B #$01,(A5)+ ; '.' | 001D 7001
+$0506 10C0EEF2 BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 018C
+$050A 10C0EEF6 MOVE.B #$01,$00000101 ; '.' | 11FC 0001 0101
+$0510 10C0EEFC _DbgBreak | 4E48
+$0512 10C0EEFE *MOVEQ.L #$01,D0 | 7001
+$0514 10C0EF00 BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 017E
+$0518 10C0EF04 _SysLaunchConsole ; $10C0E30C | 4E4F A0BE
+$051C 10C0EF08 MOVEQ.L #$01,D0 | 7001
+$051E 10C0EF0A BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 0174
+$0522 10C0EF0E MOVEQ.L #$00,D0 | 7000

You can even enter an expression by itself on the command line as a form of hex calculator:
20*4+3
$83 #131 #-125 '.'

This has been a brief introduction to expressions in order to lead into the commonly-used commands. For a full
discussion of expressions and the available operators, see the Debugger Expressions section below.

8.4.2.2 Displaying Registers, Memory and Instructions
Usually, the first thing one does after breaking into the debugger is to disassemble code around the current
program counter, or display variables. The following commands perform these functions, as well as allowing you
to change memory.

One fairly advanced feature of the debugger is the ability to dump memory according to a specific structure
definition. This is the <template> option to the dm command. The section below on Utility Commands
describes how to define templates for various structures.

dm <address> [<count>] [<template>]
Display memory at <address> for <count> bytes. If count is
omitted then assume a count of 16. If <template> is
included, then display memory according to that template.

db <address> Display the byte (8 bits) at given address
dw <address> Display the word (16 bits) at given address
dl <address> Display the long word (32 bits) at given address

sb <address> <value...>
Set Byte(s) at given address to <value>. Entering multiple
<values> will set multiple bytes starting at <address>

sw <address> <value...>
Set Word(s) (16 bits) at given address to <value>. Entering
multiple <values> will set multiple words starting at
<address>

Handspring Development Tool Guide

- 72 -

sl <address> <value...>

Set Long(s) (32 bits) at given address to <value>. Entering
multiple <values> will set multiple longs starting at
<address>

il <address> [<lineCount>]
Instruction List. Disassemble the instructions at the given
address.

reg
Display current values of all the processor's registers. Note
that the current values of all the registers also appear in the
CPU Registers window.

sc
Stack Crawl. Display a list of routines on the stack using
information stored in the frame pointer register (A6).

sc7

Stack Crawl using the stack pointer (A7) instead of the frame
pointer (A6). This will display information about routines on
the stack that don't set up frame pointers but will also
sometimes show bogus routines as well.

The following example shows how some of these commands can be used:
reg <= Display all processor registers
D0 = 00000102 A0 = 10C0EEF6 USP = 420024FD
D1 = 00000013 A1 = 10C0EF0E SSP = 00013412
D2 = 0000001A A2 = 000134F0
D3 = 00000000 A3 = 00015404
D4 = 0001008E A4 = 10CD884E
D5 = 00000000 A5 = 00014A06
D6 = 00D1F334 A6 = 000134DA PC = 10C0EEFE
D7 = 0001515E A7 = 00013412 SR = tSxnzvc Int = 0

10C0EEFE *MOVEQ.L #$01,D0 | 7001

sc <= Display stack crawl. The routines are listed
in order from oldest (at top) to newest (at bottom).
In this example, the current routine was called from
EventLoop+0016.

Calling chain using A6 Links:
A6 Frame Caller
00000000 10C68982 cjtkend+0000
00015086 10C6CA26 __Startup__+0060
00015066 10C6CCCE PilotMain+0250
00014FC2 10C0F808 SysAppLaunch+0458
00014F6E 10C10258 PrvCallWithNewStack+0016
00013418 10CD88B2 __Startup__+0060
000133F8 10CDB504 PilotMain+0036
000133DE 10CDB47C EventLoop+0016

dm pc <= Display memory at the program counter
10C0EEFE: 70 01 60 00 01 7E 4E 4F A0 BE 70 01 60 00 01 74 "p.`..~NO..p.`..t"

il pc <= Disassemble code at program counter
'SysHandleEvent 10C0E9EC'
+$0512 10C0EEFE *MOVEQ.L #$01,D0 | 7001
+$0514 10C0EF00 BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 017E
+$0518 10C0EF04 _SysLaunchConsole ; $10C0E30C | 4E4F A0BE
+$051C 10C0EF08 MOVEQ.L #$01,D0 | 7001
+$051E 10C0EF0A BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 0174
+$0522 10C0EF0E MOVEQ.L #$00,D0 | 7000
+$0524 10C0EF10 BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 016E
+$0528 10C0EF14 CLR.L -$0010(A6) | 42AE FFF0
+$052C 10C0EF18 PEA -$0006(A6) | 486E FFFA
+$0530 10C0EF1C PEA -$000C(A6) | 486E FFF4

dm 0 <= Display memory at address 0
00000000: FF FF FF FF 1A 34 3E 40 10 C0 92 D4 10 C0 92 F2 ".....4>@........"

Handspring Development Tool Guide

- 73 -

sb 0 1 2 <= Set the two bytes at address 0 to 1 & 2
Memory set starting at 00000000

dm 0 20 <= Display 0x20 bytes at address 0
00000000: 01 02 FF FF 1A 34 3E 40 10 C0 92 D4 10 C0 92 F2 ".....4>@........"
00000010: 10 C0 93 10 10 C0 93 18 10 C0 93 20 10 C0 93 28 "........... ...("

dw 0 <= Display the word at address 0
Word at 00000000 = $0102 #258 #258 '..'

dm 0 RectangleType <= Display memory at address 0 as a RectangleType
structure

00000000 struct RectangleType
{

00000000 PointType topLeft
{

00000000 SWord x = $0102
00000002 SWord y = $-1

}
00000004 PointType extent

{
00000004 SWord x = $1A34
00000006 SWord y = $3E40

}
}

8.4.2.3 Flow Control
The most commonly used debugger commands are probably those for flow control. These include single-
stepping, breakpoints, and continuing. These are summarized below along with their most commonly used
options.

g Go.
s Step Into. Will step into subroutine calls and system traps.
t Step Over. Will step over subroutine calls and system traps

gt <address>
Go Till address. Sets a temporary breakpoint at <address> and continues
execution.

br <address>

Set breakpoint at <address>. PalmDebugger currently supports up to 5
breakpoints at any one time. Also note that although breakpoints are
supported on ROM addresses, these types of breakpoints will force the
device to run very slowly - it will essentially single step until the program
counter reaches a set breakpoint address. Breakpoints set in RAM do not
incur any performance penalty.

cl [<address>] Clear breakpoint at <address> or, if no address, clear all breakpoints.
brd Display all breakpoints.
atb <"systemTrapName"> A-Trap break. Set a breakpoint at the given system call.
atc <"systemTrapName"> A-Trap clear. Clear breakpoint at the given system call.
atd Display all current A-Trap breaks.

ss <address>

Step Spy. Execute instructions until the DWord at <address> changes
value. Warning: this routine essentially makes the processor single step
through instructions until the data at <address> changes and thus
makes the device run very slow.

reset Perform a soft reset of the device.

Handspring Development Tool Guide

- 74 -

The following example shows how to use most of these commands. You can follow along by first putting the
device into the debugger stub by typing Shortcut-.-1. The commands entered by the user into the Debugger
window of PalmDebugger are shown in bold. One of the shortcuts illustrated below is using the ':' character to
represent the starting address of the current routine when entering an address. This is a very handy shortcut to
use when setting breakpoints or disassembling code.

att <= Attach to device
EXCEPTION ID = $A0
+$0512 10C0EEFE *MOVEQ.L #$01,D0 | 7001

il pc <= Disassemble at current program counter
'SysHandleEvent 10C0E9EC'
+$0512 10C0EEFE *MOVEQ.L #$01,D0 | 7001
+$0514 10C0EF00 BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 017E
+$0518 10C0EF04 _SysLaunchConsole ; $10C0E30C | 4E4F A0BE
+$051C 10C0EF08 MOVEQ.L #$01,D0 | 7001
+$051E 10C0EF0A BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 0174
+$0522 10C0EF0E MOVEQ.L #$00,D0 | 7000
+$0524 10C0EF10 BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 016E
+$0528 10C0EF14 CLR.L -$0010(A6) | 42AE FFF0
+$052C 10C0EF18 PEA -$0006(A6) | 486E FFFA
+$0530 10C0EF1C PEA -$000C(A6) | 486E FFF4

sc <= Display stack crawl. The routines are listed
in order from oldest (at top) to newest (at bottom).
In this example, the current routine was called from
EventLoop+0016.

Calling chain using A6 Links:
A6 Frame Caller
00000000 10C68982 cjtkend+0000
00015086 10C6CA26 __Startup__+0060
00015066 10C6CCCE PilotMain+0250
00014FC2 10C0F808 SysAppLaunch+0458
00014F6E 10C10258 PrvCallWithNewStack+0016
00013418 10CD88B2 __Startup__+0060
000133F8 10CDB504 PilotMain+0036
000133DE 10CDB47C EventLoop+0016

s <= Single-Step one instruction
'SysHandleEvent' Will Branch
+$0514 10C0EF00 *BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 017E

<= Just hit Enter to repeat the Single-Step
+$0694 10C0F080 *MOVEM.L (A7)+,D3-D5/A2-A4 | 4CDF 1C38

<= Just hit Enter to repeat the Single-Step
+$0698 10C0F084 *UNLK A6 | 4E5E

<= Just hit Enter to repeat the Single-Step
+$069A 10C0F086 *RTS | 4E75 8E53 7973 4861

<= Just hit Enter to repeat the Single-Step
+$0018 10CDB47E *TST.B D0 | 4A00

il <= Disassemble at current program counter
'EventLoop 10CDB466'
+$0018 10CDB47E *TST.B D0 | 4A00
+$001A 10CDB480 LEA $000C(A7),A7 | 4FEF 000C
+$001E 10CDB484 BNE.S EventLoop+$0050 ; 10CDB4B6 | 6630
+$0020 10CDB486 PEA -$001A(A6) | 486E FFE6
+$0024 10CDB48A PEA -$0018(A6) | 486E FFE8
+$0028 10CDB48E MOVE.L -$0024(A5),-(A7) | 2F2D FFDC
+$002C 10CDB492 _MenuHandleEvent ; $10C4B768 | 4E4F A1BF
+$0030 10CDB496 TST.B D0 | 4A00
+$0032 10CDB498 LEA $000C(A7),A7 | 4FEF 000C
+$0036 10CDB49C BNE.S EventLoop+$0050 ; 10CDB4B6 | 6618

gt 10cdb484 <= Go-Till address 0x10CDB484. Alternatively, we could
have used :+1E to represent this address

'EventLoop' Will Branch
+$001E 10CDB484 *BNE.S EventLoop+$0050 ; 10CDB4B6 | 6630

br :+50 <= Set a breakpoint at current routine+0x50
Breakpoint set at 10CDB4B6 (EventLoop+0050)

Handspring Development Tool Guide

- 75 -

g <= Go
+$0050 10CDB4B6 *CMPI.W #$0016,-$0018(A6) ; '..' | 0C6E 0016 FFE8

brd <= Display all currently set breakpoints
10CDB4B6 (EventLoop+0050)

cl <= Clear all breakpoints
All breakpoints cleared

atb "EvtGetEvent" <= Break whenever the EvtGetEvent system trap is called
A-trap set on 011d (EvtGetEvent)

g <= Go. The unit will break as soon as EvtGetEvent is
called.

Remote stopped due to: A-TRAP BREAK EXCEPTION
'EvtGetEvent'
+$0000 10C3B1E2 *LINK A6,$0000 | 4E56 0000

atd <= Display list of A-Traps
Displaying A-Traps:
Function Name Trap # Library Address
===
EvtGetEvent $011D none 10C3B1E2

atc <= Clear all A-Traps
All A-Traps cleared

ss a2 <= Step-Spy until the DWord at address 0x15404 (which is the
current value of register A2) changes.

Step Spying on address: 00015404
'EvtGetSysEvent'
+$00E8 10C1E980 *CLR.B $0008(A4) | 422C 0008

8.4.2.4 Heap and Database Commands
There is a set of commands that can be entered in the Debugger window that mirrors commands supported by
the Console window. These include commands for displaying information about databases and memory heaps.
These are especially useful because a bug often involves a corrupted memory heap or database, and you'll want to
dump information about a heap or database while single-stepping through your program.

The following commands have the same options as their equivalents in the Console window and if you do a help
cmdName on them, you will see the same help information that the Console window prints out. However, because
the '-' symbol indicates subtraction in the Debugger window, it cannot be used when entering command options;
instead, use the backslash symbol (\). For example:

dir 0 \a

hl <cardNo> Heap List. Display a list of heaps for this card.

hd <heapID>
Heap Dump. Dump the contents of the given heap. The heapID can be obtained by first
getting a heap list using the hl command.

ht <heapID>
Heap Total. Display just the summary information about the heap - this is the same
information printed out at the end of a heap dump.

hchk <heapID>
Heap Check. Validate that the given heap is not corrupted. Both the HD and HT
commands also verify a heap as part of their operation as well.

dir <cardNo> Directory. Dump a directory of databases for the given card.

8.4.2.5 Utility Commands
The last set of commands to cover here is the utility commands. These include commands for loading memory
from a file image (or vice-versa), flashing new data into the Flash ROM of a device, running debugger scripts,
defining templates for use with the dm command, and defining debugger command aliases.

Handspring Development Tool Guide

- 76 -

For a good example of how to define structure templates and aliases, see the SystemTypes text file which appears
in the Scripts subdirectory of PalmDebugger. This text file contains definitions of a large number of Palm OS
system structures.

In all cases below, the default directory for the <"filename"> parameter is the Device sub-directory of
PalmDebugger except as noted.

load <"filename"> <addr> Load a file into memory at the given address.

save <"filename"> <addr> <bytes>
Create a file in the Device sub-directory of
PalmDebugger which is an image of the memory
at the given address.

flash <"filename"> <addr>
Program FLASH ROM with the contents of
<filename>.

run <"filename">

Execute the debugger commands contained in
the text file "filename". The default directory is
not the Device sub-directory like the load, save
and flash commands but rather the root
PalmDebugger directory.

alias <"name"> [<"text">]
Define or view (if no <text> parameter) a new
alias command

aliases Display list of all defined aliases.

typedef <template> [@]<"name">
Define a new template as the same as an existing
template or as a pointer to an existing template.

typedef struct <"name">
> <template> [@]<"name">[[count]] [\-]

[\%]
typeend

Define a new template structure called name.
The elements of the structure are each defined
on a new line starting with '>'. The '\-' option
means don't print that field. The '\%' option
means print as a binary field. The [count]
represents an array.

wh [<"funcName"> | <A-trap #> | \a
<address>]

Where command. Find the address of a system
trap by name or number or identify the memory
chunk, database name, and resource type and ID
that contains a particular address (the \a form).

Handspring Development Tool Guide

- 77 -

load "myfile.bin" 10000 <= Load a file image into memory
100%
#24576 bytes loaded at $00010000.
save "tmpfile.bin" 10000 1000 <= Save memory contents to a file
100%
#4096 bytes saved from address $00010000 to file "tmpfile.bin"
run "SystemTypes" <= Execute the debugger commands

contained in the text file "SystemTypes"
alias "LowMem" "dm 0 LowMemType"

<= Define a new command called "LowMem"
that is an alias for the text "dm 0 LowMemType"

typedef struct "PointType" <= Define two templates called PointType
and RectangleType

> SWord "x"
> SWord "y"
typeend

typedef struct "RectangleType"
> PointType "topLeft"
> PointType "extent"
typeend

dm 0 RectangleType <= Display memory at address 0 according to
the RectangleType template.

00000000 struct RectangleType
{

00000000 PointType topLeft
{

00000000 SWord x = $-1
00000002 SWord y = $-1

}
00000004 PointType extent

{
00000004 SWord x = $1A34
00000006 SWord y = $3E40

}
}

wh "memhandlenew" <= Find the address of the given system trap
Function Name Trap # Library Address
===
memhandlenew $001E none 10C11F4A
wh \a pc <= Determine the database name, resource type

and resource ID that contains the current
program counter.

pointer 1001B204 is 322 bytes into chunk 1001AEE2 in:
card: 0, heapID: 1
database: "Text to Hex", resType: 'code', resID: 1

8.4.3 Debugger Expressions
Any commands entered in the Debugger window can be written using expressions for one or more of the
command arguments. Expressions were briefly introduced above in the command examples. This section
describes the complete expression evaluation rules for reference.

All expressions must be entered without white space. White space is used to delimit parameters to commands.

The following operators are supported, and shown from highest to lowest precedence:

.a .b .w .l .s unary left to right
~ + - @ unary right to left

* / binary left to right
+ - binary left to right
& binary left to right
^ binary left to right

Handspring Development Tool Guide

- 78 -

| binary left to right
= binary left to right

8.4.3.1 Cast Operators:
These are entered following a value, register name, address, or parenthesized expression. The byte, word, and
dword casts truncate the value at the specified size, resulting in an unsigned integral value. The sign extension
case performs a sign extension at the operands present size.

.a address cast

.b byte cast

.w word cast

.l dword cast

.s sign extension cast

Examples:
45.b
$45 #69 #69 'E'
45.w
$0045 #69 #69 '.E'
45.l
$00000045 #69 #69 '...E'

8.4.3.2 Unary Operators:
~ bitwise NOT

+ no operation
- change sign

Examples:
~1
$fe #254 #-2 '.'

2*-1
$fe #254 #-2 '.'

8.4.3.3 Dereference Operator
This is similar to the 'C' language dereference operator '*'. The operand is either an address or an integral value.

@ retrieves 4 bytes as an unsigned integral value

@.a retrieves 4 bytes as an address
@.b retrieves 1 byte as an unsigned integral value

@.w retrieves 2 bytes as an unsigned integral value
@.l retrieves 4 bytes as an unsigned integral value

Examples:
@.l(A2)

Handspring Development Tool Guide

- 79 -

$00040000 #262144 #262144 '....'

@.b(PC)
$70 #112 #112 'p'

@A7
$00000000 #0 #0 '....'

8.4.3.4 Binary Arithmetic Operators
* multiplication

/ division
+ addition

- subtraction

8.4.3.5 Binary bitwise operators
& Bitwise AND

^ Bitwise XOR
| Bitwise OR

8.4.3.6 Assignment operator

= Assignment. This operator is used to change the
value of any one of the processor's registers.

Example:
reg
D0 = 00000102 A0 = 10C0EEF6 USP = 420024FD
D1 = 00000013 A1 = 10C0EF0E SSP = 000148F4
D2 = 0000000D A2 = 000149D0
D3 = 00000000 A3 = 00015404
D4 = 00014B06 A4 = 10CF26B0
D5 = 00000000 A5 = 00013A16
D6 = 00D1F876 A6 = 000149BC PC = 10C0EEFE
D7 = 0001515E A7 = 000148F4 SR = tSxnzvc Int = 0
'SysHandleEvent'
+$0512 10C0EEFE *MOVEQ.L #$01,D0 | 7001

d0=45
$00000045 #69 #69 '...E'

Handspring Development Tool Guide

- 80 -

8.4.3.7 Constants
Numbers may be entered as character constants, binary, hexadecimal, or decimal values.

A character constant is a string of one or more characters within single quotes. C-style escape sequences are
supported. The result is an unsigned integral value of size determined as follows:

> 2 chars dword

> 1 char word
1 char byte

Examples:
'xyz1'
$78797a31 #2021227057 #2021227057 'xyz1'

'a\'Y\''
$61275927 #1629968679 #1629968679 'a'Y''

'\123'
$53 #83 #83 'S'

A binary number is entered as a % (percent sign) followed by one or more binary digits. The size is determined as
follows:

> 16 digits dword

> 8 digits word
1-8 digits byte

Example:
%00111000
$38 #56 #56 '8'

A hexadecimal number is entered as one or more hexadecimal digits, or optionally a $ (dollar sign) followed by
one or more hexadecimal digits. The size of the result is determined as follows:

> 4 digits dword

> 2 digits word
1-2 digits byte

Example
c123
$c123 #49443 #-16093 '.#'

$c123
$c123 #49443 #-16093 '.#'

Handspring Development Tool Guide

- 81 -

8.4.3.8 Special Variables
The processor registers can be used as variables in any expression. The data registers are named d0 thru d7, the
address registers are a0 thru a7, the program counter is pc, the status register is sr, and the stack pointer a7, (which
can also be referenced using it's alias name, sp.)

By default, any string that can represent a register name is interpreted as a register name and not a hexadecimal
value. To force the string to be interpreted as a hexadecimal value, either prepend it with a 0 or a '$' character:

Example:
dm a0 <= display memory at address stored in register A0
10C0EEF6: 11 FC 00 01 01 01 4E 48 70 01 60 00 01 7E 4E 4F "......NHp.`..~NO"

dm a0+d0 <= Add contents of register A0 to register D0 and
use that as the address

10C0EFF8: 60 04 38 3C 02 07 4A 44 66 26 48 6E FF FA 48 6E "`.8<..JDf&Hn..Hn"

dm a0+0d0 <= This shows how to add the hex value 0xD0 instead of
the contents of register D0

10C0EFC6: 26 3C 73 79 6E 63 7A 09 60 2E 26 3C 73 79 6E 63 "&<syncz.`.&<sync"

8.4.3.9 Special Characters:
The following special characters are recognized in any expression:

. last address entered

: starting address of the current routine

Examples:
reg
D0 = 00000001 A0 = 10C0EEF6 USP = 420024FD
D1 = 00000013 A1 = 10C0EF0E SSP = 00014854
D2 = 0000001B A2 = 0000201C
D3 = 000020AA A3 = 0000201C
D4 = 00000000 A4 = 00001A04
D5 = 00000002 A5 = 00013A16
D6 = 00000000 A6 = 00014890 PC = 10C47284
D7 = 0001515E A7 = 00014854 SR = tSxnzvc Int = 0
'FrmDoDialog'
+$006A 10C47284 *TST.B D0 | 4A00

dm sp
00014854: 00 01 48 78 00 00 20 AA 00 01 49 30 55 00 00 00 "..Hx.. ...I0U..."

dm .
00014854: 00 01 48 78 00 00 20 AA 00 01 49 30 55 00 00 00 "..Hx.. ...I0U..."

dm .+10
00014864: 1A 04 00 00 00 00 00 00 00 00 00 00 20 1C 00 00 "............ ..."

il pc
'FrmDoDialog 10C4721A'
+$006A 10C47284 *TST.B D0 | 4A00
+$006C 10C47286 ADDQ.W #$04,A7 | 584F
+$006E 10C47288 BNE.S FrmDoDialog+$0092 ; 10C472AC | 6622
+$0070 10C4728A PEA -$001A(A6) | 486E FFE6
+$0074 10C4728E PEA -$0018(A6) | 486E FFE8
+$0078 10C47292 CLR.L -(A7) | 42A7
+$007A 10C47294 _MenuHandleEvent ; $10C4B768 | 4E4F A1BF
+$007E 10C47298 TST.B D0 | 4A00
+$0080 10C4729A LEA $000C(A7),A7 | 4FEF 000C
+$0084 10C4729E BNE.S FrmDoDialog+$0092 ; 10C472AC | 660C

il :

Handspring Development Tool Guide

- 82 -

'FrmDoDialog 10C4721A'
+$0000 10C4721A LINK A6,-$0030 | 4E56 FFD0
+$0004 10C4721E MOVEM.L D3/A2,-(A7) | 48E7 1020
+$0008 10C47222 MOVE.L $0008(A6),A2 | 246E 0008
+$000C 10C47226 MOVE.B #$01,-(A7) ; '.' | 1F3C 0001
+$0010 10C4722A PEA -$0030(A6) | 486E FFD0
+$0014 10C4722E _FrmActiveState ; $10C48380 | 4E4F A33B
+$0018 10C47232 MOVE.L A2,-(A7) | 2F0A
+$001A 10C47234 _FrmSetActiveForm ; $10C45CC8 | 4E4F A174
+$001E 10C47238 BTST #$0005,$002A(A2) | 082A 0005 002A
+$0024 10C4723E LEA $000A(A7),A7 | 4FEF 000A

il :+60
'FrmDoDialog 10C4721A'
+$0060 10C4727A BNE.S FrmDoDialog+$003E ; 10C47258 | 66DC
+$0062 10C4727C PEA -$0018(A6) | 486E FFE8
+$0066 10C47280 _SysHandleEvent ; $10C0E9EC | 4E4F A0A9
+$006A 10C47284 *TST.B D0 | 4A00
+$006C 10C47286 ADDQ.W #$04,A7 | 584F
+$006E 10C47288 BNE.S FrmDoDialog+$0092 ; 10C472AC | 6622
+$0070 10C4728A PEA -$001A(A6) | 486E FFE6
+$0074 10C4728E PEA -$0018(A6) | 486E FFE8
+$0078 10C47292 CLR.L -(A7) | 42A7
+$007A 10C47294 _MenuHandleEvent ; $10C4B768 | 4E4F A1BF

Handspring Development Tool Guide

- 83 -

8.5 The Source Window
The Source window is an output-only window used for source-level debugging. As you single step, for example,
the Source window follows along and displays the source code and line number corresponding to the current
program counter. You can also select a specific line in the Source window for setting or clearing a breakpoint or
for disassembling code. Currently, the source-level debugging support only works with code built using the GNU
gcc compiler for Palm OS, although other symbol file formats may be supported in the future.

The Source window works in conjunction with the Debugger and CPU Registers windows. For example, when
you single step by entering commands in the Debugger window, the Source window will automatically track
along and any breakpoints set or cleared from the Debugger window are displayed in the Source window as well.
There are also dedicated menu commands and key equivalents for source-level debugging that don't require you
to enter commands in the Debugger window.

The Source window is split into two panes. Between the two panes is a thick horizontal line that is colored red
when the device is halted in the debugger and green when the device is running code. The upper pane is used to
display the values of the local variables for the current routine and the lower pane is used to display the actual
source code. By default, the source pane is automatically updated every time you single step in order to show the
current source file and line number corresponding to the program counter. You can also scroll the source pane or
change to a different source file altogether for purposes of setting a breakpoint or just for viewing. The left
margin of the lower pane is used to display indicators for breakpoints and the current program counter.
Breakpoints show up with a solid red circle next to the line with the current program location indicated by a green
arrow.

The source-level debugging is designed to support debugging of any type of executable code including
applications, shared libraries, system extensions, or interrupt handlers. In addition, any number of executables can
be source-level debugged simultaneously by loading multiple symbol files into the debugger. You can, for
example, source-level debug an application and a shared library that it uses at the same time.

In order to source-level debug an executable, you must first associate a symbol file with the code for the
executable that's loaded onto the device. This simply means telling the debugger the starting address of the code
on the device and the name of the symbol file on the desktop that contains the symbol information for that code
(there are simple menu commands for doing this). Any number of symbol files can be loaded into the debugger at
once and whenever the device stops in the debugger stub for any reason, PalmDebugger will automatically
determine which symbol file corresponds to the current program counter, and display the appropriate source file
and line number if one was found.

A quick example helps to illustrate how this works. In order to source-level debug an application, you could do the
following:

1. Ensure that the console stub is launched on the device by entering the Shortcut-.-2 sequence.

2. Select the Install Database and Load Symbols menu command from the Source menu.

3. From the open file dialog, select the .prc file to load onto the device.

4. PalmDebugger now imports that .prc file onto the device and looks in the same directory for an
associated symbol file. It then automatically associates that symbol file with the address in memory of
where the application was just installed.

5. At this point, the symbol file for that application is loaded into the debugger. Any time the debugger
breaks in code belonging to that application, the source window will display the associated source file and
line number. Alternately, you can break into the debugger manually (using either Shortcut-.-1 or the
Break command from the source menu") and set a breakpoint on a certain source line of the application

Handspring Development Tool Guide

- 84 -

using the Toggle Breakpoint menu command from the Source Menu or from the right-mouse button
context menu of the source window.

If the executable you wish to debug is already loaded onto the device or is in ROM, then steps 2 thru 4 above can
be replaced by selecting the Load Symbols... command from the Source menu and selecting the symbol file for
that executable.

8.5.1 How Symbol Files Are Used
This section briefly describes what is contained in a symbol file and how PalmDebugger uses that information. It
is recommended that you read it so you can better understand and utilize the source-level debugging support and
its various features.

A symbol file is created by the linker and represents one or more code resources. Most applications for Palm OS
contain only a single code resource that has a resource type of 'code' and a resource ID of 1. More complex
applications may have more than one code resource and possibly more than one symbol file, if stand-alone code
resources are used. Within the symbol file are names of each of the source files that were linked together to create
the code resource along with the offset from the start of the code resource to the object code for each source file
and each line within the source file. Also within the symbol file are descriptions of the various data structures
used and the names, types, and locations of each of the local variables for each routine, as well as the global
variables.

Besides the symbol file, the only other information required by PalmDebugger is the address of the code resource
on the device that corresponds to that symbol file. The Load Symbols... and the Install Database and Load
Symbols menu commands perform the task of lining up a symbol file with the address of the associated code
resource on the device.

8.5.2 The Load Symbols Menu Commands
There are two menu commands for loading source-level symbols. The Load Symbols for current Program
Counter... command, which is only enabled when the device is halted in the debugger, and the Load Symbols...
command, which is only enabled when the device is not halted in the debugger.

If you select the Load Symbols for current Program Counter... command, the debugger first attempts to
identify which code resource and database the program counter is currently in (this information can be obtained
manually using the "wh \a <address>" command in the Debugger window, where <address> is the current program
counter). Once the debugger identifies the database and code resource, it presents an open file dialog and asks the
user to choose the corresponding symbol file named "<DatabaseName>.<resType>.<resID>.sym". If, for example,
the program counter was found in the 'code' #1 resource of a database named Text to Hex, it asks the user to
choose the symbol file Text to Hex.code.1.sym.

If you select the Load Symbols... command, then you are immediately presented with an open file dialog asking
you to first select a symbol file. After you select a symbol file, the debugger looks up the address of the associated
database code resource on the device and "lines up" the symbol file with that address. Note that the
<DatabaseName> portion of the symbol file name must correspond exactly to the Palm OS name of the database,
which is the name that shows up when doing a directory listing of databases on the device (using the "dir"
command of the Console window) and is not always the same as the name of the .prc file for that database.

Finally, the Install Database and Load Symbols... command is a macro-type command that does two things: it
imports a prc file into the device, then automatically loads the associated symbol file for that prc file. The same
results can be obtained by manually importing the prc file using the import command on the Console window,
then loading the symbols using the Load Symbols... menu command. When you choose the Install Database
and Load Symbols... menu command, you will be presented with an open file dialog asking you to pick a prc file.
After importing this prc file into the device, PalmDebugger automatically looks in the same directory for a file
named <DatabaseName>.code.1.sym and associates this symbol file with the newly imported database.

Handspring Development Tool Guide

- 85 -

8.5.3 The Source Menu
The Source menu contains commands for source-level debugging and for loading and releasing symbol files. The
Load Symbols…, Load Symbols for current Program Counter..., and Install Database and Load Symbols...
commands were already covered in the previous section. The Remove all Symbols command will unload all
symbol files which are currently loaded. Once a symbol file is loaded, the remaining commands in the menu can
be used for setting source-level breakpoints, stopping, continuing, etc.

The Break command is only enabled when the device is not already halted in the debugger. This command
simulates entering the Shortcut-.-1 sequence on the device and is usually more convenient to use than the
equivalent Graffiti sequence. This command only works when the console stub is running on the device, however,
since it relies on the console communication in order to send a key event to the device.

The Step Into and Step Over commands work at the source-level. Both commands single step one source line at
a time. The difference between the two is that Step Into command steps into a subroutine if one is about to be
called, whereas Step Over doesn't stop until it reaches the source line after the subroutine call.

The Go command continues execution and is the same as entering the “g” command in the Debugger window.
The Go Till command sets a temporary breakpoint at the currently selected line in the source window and then
continues execution.

The Toggle Breakpoint command toggles a breakpoint at the currently selected line in the source window. The
Disassemble at Cursor command disassembles code at the currently selected line in the source window. The
output of this command will appear in the Debugger window.

Finally, the Show Current Location command automatically scrolls the source window to show the current
source file and line number. This is useful if you've previously scrolled the source window to set or clear a
breakpoint or temporarily changed it to view a different source file (using the context menu, as described below).

The Source Window Context Menu
The source window has a context menu that can be activated by right-clicking with the mouse. This menu has
many of the same commands that also appear in the Source menu of the menu bar including Break, Go Till,
Toggle Breakpoint, Disassemble at Cursor, and Show Current Location.

Also present in the context menu are pop-up items for selecting which source file to view. Every symbol file that is
loaded presents a pop-up that lists the source files for that symbol file. Using these menus, you can change the
current source file for viewing purposes or for setting and clearing breakpoints.

Limitations
Unfortunately, the source-level support in PalmDebugger is still quite limited compared to most modern source-
level debuggers. It provides the bare essentials for source-level debugging, and you'll find that there are numerous
occasions in which you will have to switch to the assembly level Debugger window and enter commands there for
certain functions:

1. The source window does not display a current stack crawl. To get a stack crawl, you must enter the sc
command in the Debugger window.

2. Local variables are only displayed in hexadecimal format.

3. The values of local variables cannot be changed from the source window. The only way to change them is
to use the sb, sw, or sl commands from the Debugger window and you must enter the address of the
variable manually.

Handspring Development Tool Guide

- 86 -

8.6 Debugging Hints
This section describes a few hypothetical debugging situations. These examples are included to help familiarize
you with the debugging commands and how they can be used together to track down certain types of problems.

8.6.1 Entering the Debugger
The most common way to enter the debugger is to enter the Graffiti sequence Shortcut-.-1, i.e., the shortcut
stroke followed by two taps to generate a period, followed by the number 1 (in the right side of the Graffiti area).

If you have already started the console stub on the device (using the Shortcut-.-2 sequence), you can use the
Break command in the Source menu. This command sends a key event to the device using the console stub
communications and this key event is identical to entering the Shortcut-.-1 Graffiti sequence by hand.

You can also rebuild your executable with a compiled breakpoint in it by making a call to DbgBreak().
Remember, though, that unless you've entered the debugger at least once already using the Shortcut-.-1
sequence, a DbgBreak() call will display a fatal error dialog instead of placing you in the debugger.

Finally, you can enter the debugger immediately after reset by holding the down button and pressing the reset
button in the back of the device with a paper clip. This will put you into the SmallROM debugger, which is
bootstrap code placed into the very front of the ROM that contains just enough code to initialize the hardware
and startup the debugger stub. If you enter the "g" command at this point, the system will jump to the BigROM.
The BigROM contains the same code as the SmallROM as well as the rest of the system code. If you press the
down button on the device while executing the "g" command, you will end up in the BigROM's debugger. You
can now set a-trap breaks, or single-step through the boot-up sequence.

The Handspring device uses USB by default for debugger communication, whereas all other Palm devices use
serial only. If desired, you can also debug a Handspring device using serial by holding the "up" key when entering
the debugger for the first time. This works when entering the Graffiti shortcut sequence or during reset as well.
To enter the serial debugger during reset, hold both the [Up] and [Down] keys while pressing the reset button.

8.6.2 Finding Code
A common problem is finding the location in memory at which code resides. The ultimate goal is being able to
single-step through the problem code to determine exactly what is going wrong. Depending on the
circumstances, you may use any one of a number of different methods.

Method 1:
If you're debugging an application and are able to rebuild it, it is sometimes easiest just to re-build the application
with a DbgBreak() call in the problem routine. This is a "compiled" breakpoint and will cause your program to
break into the debugger at that line.

Method 2:
A second method is to use PalmDebugger to set an a-trap break on a system call that the problem routine makes.
Ideally, it would be a system call that only that routine makes so that you won't get false triggers from other
routines making the same call. For example, if you wanted to find your application's main event loop, you could
set an a-trap break on EvtGetEvent():

atb "evtgetevent"
A-trap set on 011d (evtgetevent)
g
Remote stopped due to: A-TRAP BREAK EXCEPTION
'EvtGetEvent'
+$0000 10C3B1E2 *LINK A6,$0000 | 4E56 0000

When you break due to an a-trap break, you end up at the beginning of the system call. At this point, the return
address on the stack is the routine that actually made the system call which in this case is your application's main

Handspring Development Tool Guide

- 87 -

event loop. To get back to this routine, you can either single-step through the EvtGetEvent() call until it
returns (not recommended!) or set a temporary breakpoint at the return address on the stack. To do this, use the
following command:

gt @sp
EXCEPTION ID = $80
'EventLoop'
+$0016 1001B2E6 *MOVE.L A2,-(A7) | 2F0A

The '@' operator fetches the long word at the given address (the value stored in the stack pointer), so the
expression '@sp' yields the return address on the stack.

You are now at the instruction in your main event loop immediately after the EvtGetEvent() call. At this
point, you may want to disassemble this routine from the beginning. This is where the ':' symbol, which
represents the starting address of the current routine, is handy:

il :
'EventLoop 1001B2D0'
+$0000 1001B2D0 LINK A6,-$001C | 4E56 FFE4
+$0004 1001B2D4 MOVEM.L D3-D4/A2,-(A7) | 48E7 1820
+$0008 1001B2D8 LEA -$0018(A6),A2 | 45EE FFE8
+$000C 1001B2DC PEA $00000032 ; 00000032 | 4878 0032
+$0010 1001B2E0 MOVE.L A2,-(A7) | 2F0A
+$0012 1001B2E2 _EvtGetEvent ; $10C3B1E2 | 4E4F A11D
+$0016 1001B2E6 *MOVE.L A2,-(A7) | 2F0A
+$0018 1001B2E8 _SysHandleEvent ; $10C0E9EC | 4E4F A0A9
+$001C 1001B2EC ADD.W #$000C,A7 | DEFC 000C
+$0020 1001B2F0 TST.B D0 | 4A00
il :+6c
'EventLoop 1001B2D0'
+$006C 1001B33C _FrmDispatchEvent ; $10C4769A | 4E4F A1A0
+$0070 1001B340 ADDQ.W #$04,A7 | 584F
+$0072 1001B342 CMPI.W #$0016,-$0018(A6) ; '..' | 0C6E 0016 FFE8
+$0078 1001B348 BNE.S EventLoop+$000C ; 1001B2DC | 6692
+$007A 1001B34A MOVEM.L -$0028(A6),D3-D4/A2 | 4CEE 0418 FFD8
+$0080 1001B350 UNLK A6 | 4E5E
+$0082 1001B352 RTS | 4E75 8945 7665 6E74
dm 1001b354
1001B354: 89 45 76 65 6E 74 4C 6F 6F 70 00 00 4E 56 00 00 ".EventLoop..NV.."

Note the '*' to the left of the instruction after the _EvtGetEvent call - this marks the current location of the
program counter. Also notice that PalmDebugger was able to tell the name of the routine without your having to
load a symbol file. This is possible because the name of the routine is included in the code itself by the compiler.
If you display memory immediately after the return instruction of a routine, you can see the name of the routine
embedded in the code:

Another way to double-check that you are where you want to be, is to perform a stack crawl. The routines are
displayed from "oldest" at the top to "newest" at the bottom.

sc
Calling chain using A6 Links:
A6 Frame Caller
00000000 10C68982 cjtkend+0000
00015086 10C6CA26 __Startup__+0060
00015066 10C6CCCE PilotMain+0250
00014FC2 10C0F808 SysAppLaunch+0458
00014F6E 10C10258 PrvCallWithNewStack+0016
0001491E 1001CC7E start+006E
000148E6 1001CF44 PilotMain+001C

Yet another check is to get a list of the opened databases. If you are in the application you expect to be, it should
appear as one of the opened databases. Note that the "System" and "Graffiti ShortCuts" databases are always
opened by the system and always appear at the bottom of this list.

opened

Handspring Development Tool Guide

- 88 -

name resDB cardNum accessP ID openCnt mode

Tex2HexDB no 0 00015146 0001825B 1 0003
*Text to Hex yes 0 00016DD2 0001821B 1 0001
*Graffiti ShortCuts yes 0 00017D5C 0001812B 1 0007
*System yes 0 00017FEE 00D20A44 1 0005

Total: 4 databases opened

Method 3:
This brings us to the third way to find your code… by the name of the routine. The 'ft' command in the
Debugger window will find text, and if your routine name is fairly unique it is an easy way to find your routine.
The 'ft' command takes 3 arguments: the text to find, a starting address, and the number of bytes to search. To
search the first megabyte of RAM on a Visor or Palm III for example, use this command:
ft "EventLoop" 00000000 100000
dm 100005C4 ;100005C4: 45 76 65 6E 74 4C 6F 6F 70 63 61 74 69 6F 6E 00 "EventLoopcation."

After the above line is printed, hit Enter again without parameters to repeat the find
dm 1001B355 ;1001B355: 45 76 65 6E 74 4C 6F 6F 70 00 00 4E 56 00 00 2F "EventLoop..NV../"

The 'ft' command stops at the first successful find of the text and continues the search from where it left off if you
hit Enter again without any parameters. All existing PalmPilots except for the PalmV have RAM starting at
address 0x10000000. The PalmV and Visor RAM starts at address 0. To search ROM instead of RAM, use
address 0x10C00000 for early Visor or Palm devices, or 0x10000000 for later models. Use ‘dl0’ to find the
dynamic heap storage RAM, and ROM listed as heaps 0, 1 and 2 respectively. Note that the first occurrence of the
text was found at 0x100005C4. This is actually an alias of the debugger globals that are stored in low memory at
address 0x05C4 and is a copy of the string you asked the debugger to search for and not the actual routine. To
ensure that the address is of the routine you want, disassemble code before that address:

il 1001b355-23
'EventLoop 1001B2D0'
+$0062 1001B332 _FrmSetEventHandler ; $10C47672 | 4E4F A19F
+$0066 1001B336 ADDQ.W #$08,A7 | 504F
+$0068 1001B338 PEA -$0018(A6) | 486E FFE8
+$006C 1001B33C _FrmDispatchEvent ; $10C4769A | 4E4F A1A0
+$0070 1001B340 ADDQ.W #$04,A7 | 584F
+$0072 1001B342 CMPI.W #$0016,-$0018(A6) ; '..' | 0C6E 0016 FFE8
+$0078 1001B348 BNE.S EventLoop+$000C ; 1001B2DC | 6692
+$007A 1001B34A MOVEM.L -$0028(A6),D3-D4/A2 | 4CEE 0418 FFD8
+$0080 1001B350 UNLK A6 | 4E5E
+$0082 1001B352 RTS | 4E75 8945 7665 6E74

Note that we took the address of the found text (0x1001b355) and subtracted 23 bytes. We chose an odd number
because all instructions must be on word boundaries and 0x1001b355 is an odd address.

Method 4:
The last (and sometimes easiest) method to find your code is to take advantage of the source-level debugging
support. Assuming you've built your application with the gcc compiler and have generated a symbol file, load the
symbol file using the Load Symbols... menu command. Remember to launch the console stub on the device first
or the Load Symbols... command will not work. Once the symbol file is loaded, break into the debugger stub on
the device using the Break command of the Source menu, select the source line in the Source window of
PalmDebugger, and set a breakpoint there using the Toggle Breakpoint command from the Source menu or
from the source window's context menu.

Handspring Development Tool Guide

- 89 -

8.6.3 Finding Memory-Trashing Bugs
Memory-trashing bugs are often the hardest kind to track down. A bug in the code could trash low memory
globals used by the operating system, the dynamic memory heap, or an application variable. A memory corruption
in any one of these areas could cause very unpredictable behavior.

The first line of attack on these kinds of bugs is to divide and conquer: using forms of binary search, try and
narrow down which portion of the code is corrupting memory.

Heap Corruptions
If a bug trashes a memory heap, you might get a fatal error message put up by the Memory or Data Managers or
you may simply crash on some unrelated manager due to a side effect. In any case, if you do suspect a corrupted
heap, use the 'hd 0' command to dump the dynamic heap. If the heap is in a valid state, you'll see the heap dump
complete and print out totals at the bottom of the heap for amount of memory-used, memory-free, and other
statistics:

hd 0
Displaying Heap ID: 0000, mapped to 00001480

req act resType/ #resID/
start handle localID size size lck own flags type index attr ctg uniqueID name
--
-00001534 00001490 F0001491 00001E 000026 #0 #0 fM Alarm Table
-0000155A 00001494 F0001495 000456 00045E #0 #0 fM Graffiti Private
-000019B8 00001498 F0001499 000012 00001A #0 #0 fM DataMgr Protect List
(DmProtectEntryPtr*)
...
-00017DC6 -------- F0017DC6 0001F4 0001FC #0 #15 fM Handle Table: 'Graffiti ShortCuts'
-00017FC2 -------- F0017FC2 000024 00002C #0 #15 fM DmOpenInfoPtr: 'Graffiti ShortCuts'
-00017FEE -------- F0017FEE 00000E 000016 #0 #15 fM DmOpenRef: 'Graffiti ShortCuts'
--
Heap Summary:
flags: 8000
size: 016B80
numHandles: #40
Free Chunks: #14 (010A90 bytes)
Movable Chunks: #52 (006040 bytes)
Non-Movable Chunks: #0 (000000 bytes)

For a faster check of the heap without a heap dump, use the 'hchk' command. This simply checks the validity of
the heap:

hchk 0
Heap OK

By breaking into the debugger at various portions of execution and checking the heap using either hd or hchk, as
shown above, you can narrow down the heap corruption.

Another method for tracking down heap corruption is to use the mdebug command in the Console window. This
command is one of the Console commands that can be executed even when the debugger is attached. (See Using
the Console Window When the Debugger is Attached below for more info). This command puts the device into one of
a set of various heap checking modes. Basically, when the device is in this mode, it performs an automatic heap
check and verification on every memory manager call. If it detects a heap corruption during any of these checks, it
automatically breaks into the debugger. Type help mdebug to get a full list of options for this command. By
turning various memory checking features on and off, you can usually strike an acceptable balance between
performance (various modes can slow down performance considerably) and coverage.

mdebug -partial
Current mode = 001A
Only Affected heap checked/scrambled per call
Heap(s) checked on EVERY Mem call
Heap(s) scrambled on EVERY Mem call
Free chunk contents filled & checked
Minimum dynamic heap free space recording OFF

Handspring Development Tool Guide

- 90 -

Global Variable Corruptions
Some bugs may trash a global - either a low memory system global or an application global. The effects of this
type of corruption are generally unpredictable and the process of tracking them down is quite difficult and hard to
generalize.

Once you have managed to determine which address in memory is being corrupted, however, you can usually use
the 'ss' (Step-Spy) command to help determine where the bug in the code is. The 'ss' command puts the processor
in a single-step mode in which it will automatically check the contents of a given address after every instruction,
and automatically break into the debugger if the contents ever change. It takes one parameter which is the address
of a DWord in memory to check.

ss 100
Step Spying on address: 00000100

Because the 'ss' command makes the processor single-step through instructions, it makes the device run
considerably slower, so you should usually narrow the bug down to a certain area before using this command.

8.6.4 Viewing Local Variables and Function Parameters
If you are debugging using the source-level window, the local variables and parameters for functions are displayed
in the upper pane of the window. If you don't have access to symbol information, however, you have to manually
look up the variable values using commands in the Debugger window. This section walks through how to do this
with a typical function.

To illustrate the process, we will use the following example routine:

static Boolean
MainFrmEventHandler (EventPtr eventP)
{
FormPtr formP;
Boolean handled = false;
Err err;
char buffer[64];
DWord bytes=0;
SWord i;
static char prevChar = 0;

// See if StdIO can handle it
if (StdHandleEvent (eventP)) return true;

// body of function omitted for clarity
...

return false;
}

If we were to break into the debugger at the beginning of the routine, (right before it calls
StdHandleEvent()), you would see the following disassembly:

il :
'MainFrmEventHandler 1001E296'
+$0000 1001E296 LINK A6,-$0048 | 4E56 FFB8
+$0004 1001E29A MOVEM.L D3-D5/A2,-(A7) | 48E7 1C20
+$0008 1001E29E MOVE.L $0008(A6),A2 | 246E 0008
+$000C 1001E2A2 CLR.B D5 | 4205
+$000E 1001E2A4 CLR.L -$0044(A6) | 42AE FFBC
+$0012 1001E2A8 *MOVE.L A2,-(A7) | 2F0A
+$0014 1001E2AA BSR.W StdHandleEvent ; 1001F214 | 6100 0F68
+$0018 1001E2AE ADDQ.W #$04,A7 | 584F
+$001A 1001E2B0 TST.B D0 | 4A00
+$001C 1001E2B2 BEQ.S MainFrmEventHandler+$0024 ; 1001E2BA | 6706

Handspring Development Tool Guide

- 91 -

When a routine enters, the first DWord on the stack is the return address. Following that are the parameters,
from left to right. If, for example, we were to display memory to which the stack pointer points on the first
instruction of the routine (the LINK instruction), we would see the following:

dm sp
00014A2A: 10 C4 77 00 00 01 4A 4E 00 01 4A 4E 00 01 51 0E "..w...JN..JN..Q."

The first DWord (0x10C47700) is the return address of the routine. The second DWord (0x00014A4E) is the
eventP parameter to the routine. If there were another parameter to the routine, it would follow the eventP
parameter on the stack.

After the LINK instruction executes, however, the stack pointer register is changed. This happens because the
stack pointer is decremented to make room for local variables (in this example, to make room for 0x48 bytes of
local variables) and for a saved value of the A6 register. The A6 register is changed to point the beginning of the
function's stack frame. The A6 register then acts like a stack frame pointer and is used by the rest of the routine to
access function parameters and local variables. Here's a picture of what the stack looks like after the LINK
instruction:

Address : Contents

A7 => 149CE <= new "top" of stack

: ... <= 0x48 bytes of local variables
A6 => 14A26 : 00 01 4A 3A <= saved value of A6

14A2A : 10 C4 77 00 <= return address
14A2E : 00 01 4A 4E <= eventP parameter

Thus, if you display memory at register A6, you will see the following:
dm a6
00014A26: 00 01 4A 3A 10 C4 77 00 00 01 4A 4E 00 01 4A 4E "..J:..w...JN..JN"

The first DWord that A6 points to is the old value of A6. The next DWord is the return address of the routine,
followed by the parameters to the function. Thus, the first parameter to the function can always be found at 8(A6)
and indeed if you look at the function disassembly above, you can see that one of the first things it does is after the
LINK instruction is copy the value of the 'eventP' parameter from 8(A6) to register A2.

The function local variables are placed at memory locations before A6. For example, the bytes local variable,
which is a DWord, is found at -$0044(A6) and is cleared to 0 by the instruction at address 0x1001E2A4. It is not
always easy to tell where each local variable is on the stack except by disassembling the code and looking for places
in the code where that variable is accessed. Once you know the offset of the variable, you can view by using an
expression with A6. To view the value of the bytes parameter, for example, you could use the following
command:

dm -44+a6
000149E2: 00 00 00 00 00 00 1A 0C 20 00 20 04 00 01 4A 08 "........J."

8.6.5 Using the Console Window When the Debugger is Attached
When the device is in the debugger stub and PalmDebugger is attached, you normally use the Debugger window
only to enter commands. There is, however, a subset of console commands that work even when the debugger is
attached. The subset of console commands that work when the debugger is attached are those that simply display
information and don't change memory contents. These include 'dir', 'hl', 'hd', 'hchk', 'mdebug', and others.

When the debugger is attached, commands that you enter in the Console window do not go through the normal
channels and talk to the console stub on the device. They instead talk directly to the debugger stub so that they
can be executed even when the console stub has not been started.

By leveraging the use of these commands in the Console window, you now have two windows at your disposal for
displaying debugging information. This comes in handy for displaying a heap dump in the Console window that
you can view while single-stepping in the Debugger window.

Handspring Development Tool Guide

- 92 -

8.6.6 Changing PalmDebugger's baud rate
Whenever the debugger stub or console stub on the device starts up, it starts out communicating at 57,600 baud.
It is often desirable to switch to a higher baud rate in order to download large applications or other files to the
device or to a lower baud rate if you are using a serial cable without hardware handshaking lines.

If the device is in the debugger stub, and PalmDebugger is attached to the device, you can change the baud rate of
both PalmDebugger and the device at the same time by choosing a new baud rate setting from the Connection
menu of PalmDebugger. When PalmDebugger thinks the device is attached, it sends a request packet to the
device's debugger stub telling it the new baud rate to use. It then it switches over to the new baud rate itself. Keep
in mind that this new baud rate setting only remains in effect until the device is soft-reset, or until you launch an
application on the device that opens the serial port and changes the baud rate again.

You can also change the baud rate of both PalmDebugger and the device through the console stub. If you change
PalmDebugger's baud rate when it is not attached to the debugger stub, it sends the new baud rate request to the
console stub on the device instead of the debugger stub. Whether you change the baud rate through the console
stub or the debugger stub, the other stub will use the new baud rate as well.

8.6.7 Debugging Applications That Use the Serial Port
Debugging applications that use the serial port when using that same serial port for the debugger is tricky, but not
impossible. As long as the application itself and the debugger stub are using the same baud rate, you can actually
perform limited debugging functions. When the debugger stub starts up, it always initializes the serial port on the
device to 57,600 baud and assumes it will stay at that baud rate unless it gets a message from PalmDebugger while
attached telling it to change (as a result of the user picking a new baud rate from the Connection menu).

If the debugger stub on the device has been entered at least once already, and you later launch an application that
opens the serial port, that application may change the baud rate. If it does, the debugger stub on the device will
end up using that new baud rate the next time it enters. If this is the case, you will have to manually change the
baud rate setting on the PalmDebugger application's Connection menu in order to communicate again with the
device.

Of course, when you do enter the debugger stub on the device while debugging a serial application, the debugger
stub will send data over the serial port and most likely disrupt serial communications with whatever host your
Palm OS application was originally talking to. You can, however, switch the serial cable back over to
PalmDebugger, double-check your baud rate setting, and issue an 'att' command to attach to the device and
perform "post-mortem" analysis at that point.

What you cannot do when using a serial port application on the device is use the console stub. When the console
stub starts up, it opens up the serial port like a normal application would, and thus prevents any other application
from successfully opening up the port at the same time. Likewise, if you are in an application that has the serial
port open, you will not be able to start up the console stub. Remember that a number of console commands can
be used even when the device is in the debugger stub. This subset of console commands (those that merely display
information about heaps and databases) are smart enough to know when the device is currently in the debugger
stub, and can communicate with that stub instead of the console stub.

8.6.8 Importing System Extensions and Libraries
The console's 'import' command imports a new database or replaces an existing database on the device. It can
only replace an existing database, however, if that database is not currently open or protected. System extension
databases and shared libraries present a problem because they are normally kept open or marked protected so that
they won't be deleted accidentally while they are in use by the system.

If you are developing a system extension or shared library and need to import a newer version to the device, you
must make sure the old database is closed and unprotected first. If it is not, you will get the following error from
the import command:

###Error $00000219 occurred

Handspring Development Tool Guide

- 93 -

To get around this, soft-reset the device while pressing the [Up] button on the device. The [Up] button tells the
system that it should not automatically load system extensions or shared libraries. You can then import your
database and soft-reset again to make the system use the new version.

	TRADEMARK ACKNOWLEDGMENT
	Introduction
	Intended Scope of this Document
	Types of Software Development for Handspring Handhelds
	Software Development for Handspring Handhelds
	Generic Applications
	Handspring Palm OS GNU Tools
	Metrowerks CodeWarrior
	Other Development Environments

	Generic Applications on a Springboard Module
	Special Purpose Applications

	Handspring Coding Standards
	About the Handspring Coding Standards
	General Program Design
	Organization of Source Files
	Formatting Conventions
	Commenting and Style
	Naming Conventions
	Capitalization
	Choosing Names
	Resource ID names
	Filenames

	Basic Types

	Handspring Palm OS GNU Tools – Getting Started
	First Step: Download The Tools
	If You Are New to GNU C Development
	Development Environment and Tools
	Sample Projects
	Utilities
	General Documentation

	Second Step: Install and Configure
	Installation
	Configuration

	Third Step: Software Development
	Fourth Step: Program and ROM Build
	Build Process
	Generate a ROM Image
	Creating Flash ROM Updates for Customers

	Fifth Step: Debugging
	Debugging on a Handheld
	Debugging on the Emulator (POSE)

	Handspring Palm OS GNU Tools
	About the Handspring Palm OS GNU Tools
	Installation
	Manual Installation Of Tools
	Using the Function Pop-up Developer Studio add-in

	Overview of Available Tools
	Palm-Specific tools
	General Purpose GNU tools
	GNU tools for Palm OS development

	Pitfalls to Avoid!
	make
	m68k-palmos-gcc

	Using the Tools

	GNU References
	Palm-MakeROM Overview
	Description
	Usage Summary
	
	
	ROM Store Options

	Examples

	Palm-RC
	Description

	HsSplit
	Description
	Usage Summary
	Examples

	Palm-PrcDump
	Description
	Usage Summary
	Examples

	ToDos, ToMac, ToWin, ToUnix
	Description
	Usage Summary
	Examples

	PalmRC User Manual
	Description
	Usage
	RCP file format
	Include Files

	Resource Language Reference
	International Support
	Known Bugs

	Palm Debugger User’s Guide
	About PalmDebugger
	User Interface Overview
	The Windows
	The Menus

	The Console Window
	Commonly used Console Commands
	Less Commonly-used Console Commands

	The Debugger Window
	Attaching to the Device
	Commonly-Used Debugger Commands
	Entering Commands
	Displaying Registers, Memory and Instructions
	Flow Control
	Heap and Database Commands
	Utility Commands

	Debugger Expressions
	Cast Operators:
	Unary Operators:
	Dereference Operator
	Binary Arithmetic Operators
	Binary bitwise operators
	Assignment operator
	Constants
	Special Variables
	Special Characters:

	The Source Window
	How Symbol Files Are Used
	The Load Symbols Menu Commands
	The Source Menu
	
	
	The Source Window Context Menu
	Limitations

	Debugging Hints
	Entering the Debugger
	Finding Code
	
	
	Method 1:
	Method 2:
	Method 3:
	Method 4:

	Finding Memory-Trashing Bugs
	Heap Corruptions
	
	Global Variable Corruptions

	Viewing Local Variables and Function Parameters
	Using the Console Window When the Debugger is Attached
	Changing PalmDebugger's baud rate
	Debugging Applications That Use the Serial Port
	Importing System Extensions and Libraries

